• Title/Summary/Keyword: Polymeric effect

Search Result 399, Processing Time 0.024 seconds

A Study on the Evaluation of Adsorption Characteristics of VOCs on TiO2 and Al2O3 and Investigation of the Thermal Durability by Molding Various Structures (TiO2와 Al2O3의 기상 VOCs 흡착 특성 평가 및 다양한 구조체로의 성형을 통한 열적 내구성 확보에 관한 연구)

  • Hwang, In-Hyuck;Lee, Sang Moon;Kim, Sung Su
    • Clean Technology
    • /
    • v.24 no.4
    • /
    • pp.280-286
    • /
    • 2018
  • In this study, the adsorption performance of vapor phase VOCs under dry conditions was evaluated by using two metal oxides, $TiO_2$ powder and $Al_2O_3$ powder. BET analysis and ammonia in-situ FT-IR analysis were used to analyze specific surface area and surface acid site. As a result, $TiO_2$ powder and $Al_2O_3$ powder had a specific surface area of $317.6m^2\;g^{-1}$ and $64m^2\;g^{-1}$, respectively. In the case of $TiO_2$ powder, many acid sites were observed on the surface. As a result of evaluating the vapor phase VOCs adsorption performance using two metal oxide powders, $TiO_2$ powder having a relatively large specific surface area and a large number of acid sites exhibited relatively good adsorption performance. In particular, it is considered that the specific surface area directly affects the adsorption performance, and further study on the effect of the acid site is required. Based on the $TiO_2$ exhibited excellent adsorption performance, it manufactured into various forms of honeycomb, hollow fiber and disc. As a result, the adsorption performance was lower than that of the powder, but it is advantageous in view of applicability. In addition, it was confirmed that the disc adsorbent having excellent thermal durability due to the characteristics of the manufacturing process stably maintains adsorption performance even at a high temperature desorption process several times.

Effect of Addition of β-TCP on Bioactivity and Mechanical Properties of Biodegradable PLA/β-TCP Composites (β-TCP 첨가량에 따른 생분해성 PLA/β-TCP 복합체의 생체활성과 기계적 특성 평가)

  • Moon, Hee-Jung;Kim, Seol-Ak;Kim, Dong-Ae
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.3
    • /
    • pp.609-615
    • /
    • 2021
  • The aim of the present study was to investigate the mechanical properties of melt-injected poly lactic acid (PLA) composites with β-tricalcium phosphate (β-TCP). The PLA mixed with calcined PLA/β-TCP powder to be contents of 0, 10, 30, 50 wt%, respectively, was dissolved in chloroform solvent under stirring for 24 h. Then the liquid mixtures were dropped into ethanol to extract solvent. After drying, the well-dispersed PLA/β-TCP composites were granulated and melt-injected to prepare specimens for various mechanical testing. PLA/β-TCP induced the precipitation of an apatite bone-mineral phase on the surface after immersion in a human simulated body fluid (SBF) for 90 days, showing in bioactivity. Mean various mechanical properties PLA/β-TCP composite were increased up to 10-30 wt% with significantly in part and composite were decreased 50 wt% of showing in mechanical properties. In conclusion, Over 30 wt% addition of β-TCP to PLA may be not advisable to improve the mechanical properties of melt-injected polymeric composites. Results indicated that β-TCP can be used considered as potential reinforcing agent for increasing mechanical properties for PLA. Therefore, it was suggest that the additional effects of β-TCP and research on a wide range of substances.

The Effect of Platelet Derived Growth Factor - BB Loaded Chitosan/Calcium Metaphosphate on Bone Regeneration (혈소판유래성장인자를 함유한 Chitosan/Calcium Metaphosphate의 골조직재생효과에 관한 연구)

  • Lee, Seung-Yeol;Seol, Yang-Jo;Lee, Yong-Moo;Lee, Ju-Yeon;Lee, Seung-Jin;Kim, Suk-Young;Ku, Young;Rhyu, In-Chul;Han, Soo-Boo;Choi, Sang-Mook;Chung, Chong-Pyoung
    • Journal of Periodontal and Implant Science
    • /
    • v.31 no.1
    • /
    • pp.1-23
    • /
    • 2001
  • Chitosan is biodegradable natural polymer that has been demonstrated its ability to improve wound healing, and calcium metaphosphate(CMP) is a unique class of phosphate minerals having a polymeric structure. In this study, chitosan/CMP and platelet derived growth factor(PDGF-BB) loaded chitosan/CMP sponges were developed, and the effect of the sponges on bone regeneration and their possibility as scaffolds for bone formation by three-dimensional osteoblast culture were examined. PDGF-BB loaded chitosan/CMP sponges were prepared by freeze-drying of a mixture of chitosan solution and CMP powder, and soaking in a PDGF-BB solution. Fabricated sponge retained its 3-dimensional porous structure with $100-200\;{\mu}m$ pores. The release kinetics of PDGF-BB loaded onto the sponge were measured in vitro with $^{125}I-labeled$ PDGF-BB. In order to examine their possibility as scaffolds for bone formation, fetal rat calvarial osteoblastic cells were isolated, cultured, and seeded into the sponges. The cell-sponge constructs were cultured for 28 days. Cell proliferation, alkaline phosphatase activity were measured at 1, 7, 14 and 28 days, and histologic examination was performed. In order to examine the effect on the healing of bone defect, the sponges were implanted into rat calvarial defects. Rats were sacrificed 2 and 4 weeks after implantation and histologic and histomorphometrical examination were performed. An effective therapeutic concentration of PDGF-BB following a high initial burst release was maintained throughout the examination period. PDGF-BB loaded chitosan/CMP sponges supported the proliferation of seeded osteoblastic cells as well as their differentiation as indicated by high alkaline phosphatase activities. Histologic findings indicated that seeded osteoblastic cells well attached to sponge matrices and proliferated in a multi-layer fashion. In the experiments of implantation in rat calvarial defects, histologic and histomorphometric examination revealed that chitosan/CMP sponge promoted osseous healing as compared to controls. PDGF-BB loaded chitosan/CMP sponge further echanced bone regeneration. These results suggested that PDGF-BB loaded chitosan/CMP sponge was a feasable scaffolding material to grow osteoblast in a three-dimentional structure for transplantation into a site for bone regeneration.

  • PDF

A Study on the Extraction of Monasil PCA using Liquid CO2 (액체 이산화탄소 이용한 Monasil PCA 추출에 대한 연구)

  • Cho, Dong Woo;Oh, Kyoung Shil;Bae, Won;Kim, Hwayong;Lee, Kab-Soo
    • Korean Chemical Engineering Research
    • /
    • v.50 no.4
    • /
    • pp.684-689
    • /
    • 2012
  • Poly(acrylic acid) (PAA) microspheres is one of the widely-used polymeric materials for the bio-field application and the electric materials. For the synthesis of PAA microspheres, the polymerization technique using surfactants is applied. After the synthesis, the purification and separation processes are required for the removal of surfactant. When general organic solvents were used, many problems, such as huge amount of waste solvent, additional separation processes, and the possibility of residual media, were occurred. Thus, High-pressure Soxhlet extraction using liquid $CO_2$ was developed to solve these problems. In this study, High-pressure Soxhlet extraction of the synthesized PAA microspheres using liquid $CO_2$ was conducted for the removal of Monasil PCA which is used for the dispersion polymerization of acrylic acid in compressed liquid Dimethyl ether (DME). The morphology of the extracted PAA particles was checked by field emission scanning electron microscopy (FE-SEM) and the residual concentration of Monasil PCA was analyzed by inductively coupled plasma - Optical Emission Spectrometer (ICP-OES). For studying the effect of the solvent effect, Soxhlet extraction was conducted using n-hexane, liquid DME, and liquid $CO_2$. In case of n-hexane, some extracted PAA microspheres were produced. However, deformation was also occurred due to the high thermal energy of n-hexane vapor. Liquid DME could not remove Monasil PCA. When using liquid $CO_2$, the extracted PAA microspheres which were free for the residual solvent were produced without deformation. For finding the optimum operating condition, high-pressure Soxhlet extraction was conducted for 8 hours with changing the temperature of reboiler and condenser. When the extractor temperature is $19.6{\pm}0.2^{\circ}C$ and the pressure is $51.5{\pm}0.5$ bar, the best removal efficiency was obtained.

Effect of Fouling Reducing Additives on Membrane Filtration Resistance of Activated Sludge (막오염 감소제가 활성슬러지의 여과저항에 미치는 영향)

  • Chung, Tai Hak;Lee, Jong Hoon;Kim, Hyoung Gun;Bae, Young Kyoung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.6
    • /
    • pp.406-413
    • /
    • 2012
  • Effect of three additives, chitosan, ferric chloride, and MPE50 on membrane fouling reduction was studied. They were introduced with various dosing rate into activated sludge, and changes in filtration resistance measured by the batch cell filtration test were evaluated. Both the filtration resistance and the specific cake resistance were minimized at 20 mg/g-MLSS with chitosan, 70 mg/g-MLSS with ferric chloride, and 20 mg/g-MLSS with MPE50 addition, respectively. Introduction of the additives into the activated sludge resulted in reduction of not only cake resistance, but also fouling resistance. However, the chitosan addition to three different activated sludge resulted in three different optimal dose of 10, 20, 30 mg/g-MLSS, respectively. This implies that the optimal dose is dependent on sludge characteristics rather than a constant value. Overdose above the optimal dosage always aggravated filterability in all cases. Zeta potential of sludge flocs, relative hydrophobicity, floc size distribution, soluble EPS concentration and supernatant turbidity were measured in order to analyze fouling reduction mechanism. Nearly neutral surface charge along with the largest particle size was observed at the optimal dose. This could be explained by particle destabilization and restabilization mechanism as positively charged additives were injected into sludge flocs of negative surface charge. Both soluble EPS concentration and supernatant turbidity also showed the lowest value at the optimal dose. These foulants are believed to be coagulated and entrapped in sludge flocs during flocculation. Chitosan and MPE50 which are cationic polymeric substances showed higher reduction in both soluble EPS and fine particles comparing with ferric chloride.

Influence of Different Nitrogen Fertilizer Application Levels and Application Timing on Gluten Fraction and Bread Loaf Volume During Grain Filling (빵용 밀 품종의 등숙기 질소 시비 시기와 양이 글루텐 분획 및 빵 부피에 미치는 영향)

  • Cho, Seong-Woo;Kang, Taek-Gyu;Park, Chul Soo;Son, Jae-Han;Choi, Chang-Hyun;Cheong, Young-Keun;Yoon, Young-Mi;Kim, Kyong-Ho;Kang, Chon-Sik
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.63 no.3
    • /
    • pp.229-238
    • /
    • 2018
  • The purpose of this study was to evaluate the effects of nitrogen fertilization amount and timing of application on protein content, dough properties, change in protein fraction, and bread loaf volume for Korean wheat cultivars, Baekkang, Joongmo2008, and Saekeumkang, for bread with a superior gluten composition during the grain filling stage. Protein content increased with an increase in the amount of N and timing of application. The SDS segmentation volume (SDSS) increased with an increase in N, but there was no effect of the timing of N application on SDSS. An increase in N amount and timing of application caused a difference in dough properties, such as water absorption, mixing time, and tolerance, among the cultivars. Soluble and insoluble polymeric and monomeric protein contents increased with an increase in N amount and timing of application the three Korean wheat cultivars. The effects of N amount and application timing on bread loaf volume (BLV) varied among the cultivars. The BLV of Saekeumkang increased regardless of the N amount and timing of application, but that of Baekkang and Joongmo2008 cultivars was reduced. However, there was a positive correlation between protein content with the addition of N fertilization and BLV. In addition, SDSS, mixing time, and protein fractions were positively correlated with BLV. Since the response of fertilizer conditions was different for each wheat cultivar, it is necessary to build a suitable fertilizing system for each of them. Additionally, since the environment is changing, such as abnormal climate during the maturing period, research is needed to establish appropriate fertilizer conditions for varieties of bread wheat.

Properties of Quercus variabilis bio-oil prepared by sample preparation (시료 조건에 따른 굴참나무 바이오오일의 특성)

  • Chea, Kwang-Seok;Jo, Tae-Su;Choi, Seok-Hwan;Lee, Soo-Min;Hwang, Hye-Won;Choi, Joon-Weon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.32 no.1
    • /
    • pp.148-156
    • /
    • 2015
  • In this study the differences in the sample size and sample input changes as characteristics of bio-oil oak(Quercus variabilis), the oak 0.5~2.0 mm of the oak weighing 300~900g was processed into bio-oil via fast pyrolysis for 1.64 seconds. In this study, the physico-chemical properties of biooil using oak were investigated. Fast pyrolysis was adopted to increase the bio-oil yield from raw material. Although the differences in sample size and sample input changes in the yield of pyrolysis products were not significantly noticeable, increases in the yield of bio-oil accounted for approximately 60.3 to 62.1%, in the order of non-condensed gas, and biochar. When the primary bio-oil obtained by the condensation of the cooling tube and the seconary bio-oil obtained from the electric dust collector were measured separately, the yield of primary bio-oil was twice as higher than that of the secondary bio-oil. However, HHV (Higher Heating Value) of the secondary bio-oil was approximately twice as higher than that of the primary bio-oil by up to 5,602 kcal/kg. The water content of the primary bio-oil was more than 20% of the moisture content of the secondary bio-oil, which was 10% or less. In addition, the result of the elemental analysis regarding the secondary bio-oil, its primary carbon content was higher than that of the primary bio-oil, and since the oxygen content is low, the water content as well as elemental composition are believed to have an effect on the calorific value. The higher the storage temperature or the longer the storage period, the degree of the viscosity of the secondary bio-oil was higher than that of the primary bio-oil. This can be the attributed to the chemical bond between the polymeric bio-oil that forms during the storage period.

The effects of microplastics on marine ecosystem and future research directions (미세플라스틱의 해양 생태계에 대한 영향과 향후 연구 방향)

  • Kim, Kanghee;Hwang, Junghye;Choi, Jin Soo;Heo, Yunwi;Park, June-Woo
    • Korean Journal of Environmental Biology
    • /
    • v.37 no.4
    • /
    • pp.625-639
    • /
    • 2019
  • Microplastics are one of the substances threatening the marine ecosystem. Here, we summarize the status of research on the effect of microplastics on marine life and suggest future research directions. Microplastics are synthetic polymeric compounds smaller than 5 mm and these materials released into the environment are not only physically small but do not decompose over time. Thus, they accumulate extensively on land, from the coast to the sea, and from the surface to the deep sea. Microplastic can be ingested and accumulated in marine life. Furthermore, the elution of chemicals added to plastic represents another risk. Microplastics accumulated in the ocean affect the growth, development, behavior, reproduction, and death of marine life. However, the properties of microplastics vary widely in size, material, shape, and other aspects and toxicity tests conducted on several properties of microplastics cannot represent the hazards of all other microplastics. It is necessary to evaluate the risks according to the types of microplastic, but due to their variety and the lack of uniformity in research results, it is difficult to compare and analyze the results of previous studies. Therefore, it is necessary to derive a standard test method to estimate the biological risk from different types of microplastics. In addition, while most of the previous studies were conducted mostly on spheres for the convenience of the experiments, they do not properly reflect the reality that fibers and fragments are the main forms of microplastics in the marine environment and in fish and shellfish. Furthermore, studies have been conducted on additives and POPs (persistent organic pollutants) in plastics, but little is known about their toxic effects on the body. The effects of microplastics on the marine ecosystems and humans could be identified in more detail if standard testing methods are developed, microplastics in the form of fibers and fragments rather than spheres are tested, and additives and POPs are analyzed. These investigations will allow us to identify the impact of microplastics on marine ecosystems and humans in more detail.

A Study on the Nutritional Assessment and the Effects of Enteral Nutritional Supports of Tube Feeding In-patients (경관급식 중인 입원환자의 영양상태 평가와 영양 보충제 투여의 영향에 관한 연구)

  • 윤숙영;김성미
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.25 no.5
    • /
    • pp.855-864
    • /
    • 1996
  • The purpose of this study is to evaluate nutritional status of tube feeding patients, and to investigate the effects of giving enteral nutritional support to them. 83 in-patients have been examined for their nutritional status. The mean caloric density was 0.77kca1/m1. 36.1% to 75.9% of them were malnourished in terms of biochemical assessment. The energy intake showed the significant and positive correlation in all biochemical parameters. And the protein intake showed the significant and positive correlation in total protein, serum albumin, serum iron, hemoglobin, hematocrit and TLC. But age was correlated negatively to serum albumin and transferrin. The amount of energy and protein intake has been significantly increased as the tube feeding duration became longer. Also the effect of enteral nutritional support for 6 weeks has been investigated. Case group(n=8) was administered 250kca1 of polymeric formula in addition to their usual diet, while control group(n=8) kept the amount of their original intake. When comparing the biochemical changes of the case group and those of control group at week 0 and week 6 respectively, it showed significant differences in total protein, serum transferrin and TLC. This study suggests that the malnourished status of tube feeding patients can be improved and even prevented if nutritional support is properly administered.

  • PDF