DOI QR코드

DOI QR Code

Effect of Fouling Reducing Additives on Membrane Filtration Resistance of Activated Sludge

막오염 감소제가 활성슬러지의 여과저항에 미치는 영향

  • Chung, Tai Hak (Department of Civil & Environmental Engineering, Seoul National University) ;
  • Lee, Jong Hoon (Doosan Heavy Industries & Construction) ;
  • Kim, Hyoung Gun (Posco E&C Civil and Environment Division) ;
  • Bae, Young Kyoung (Department of Civil & Environmental Engineering, Seoul National University)
  • 정태학 (서울대학교 건설환경공학부) ;
  • 이종훈 (두산중공업) ;
  • 김형건 (포스코건설 토목환경사업본부) ;
  • 배영경 (서울대학교 건설환경공학부)
  • Received : 2011.11.24
  • Accepted : 2012.06.27
  • Published : 2012.06.30

Abstract

Effect of three additives, chitosan, ferric chloride, and MPE50 on membrane fouling reduction was studied. They were introduced with various dosing rate into activated sludge, and changes in filtration resistance measured by the batch cell filtration test were evaluated. Both the filtration resistance and the specific cake resistance were minimized at 20 mg/g-MLSS with chitosan, 70 mg/g-MLSS with ferric chloride, and 20 mg/g-MLSS with MPE50 addition, respectively. Introduction of the additives into the activated sludge resulted in reduction of not only cake resistance, but also fouling resistance. However, the chitosan addition to three different activated sludge resulted in three different optimal dose of 10, 20, 30 mg/g-MLSS, respectively. This implies that the optimal dose is dependent on sludge characteristics rather than a constant value. Overdose above the optimal dosage always aggravated filterability in all cases. Zeta potential of sludge flocs, relative hydrophobicity, floc size distribution, soluble EPS concentration and supernatant turbidity were measured in order to analyze fouling reduction mechanism. Nearly neutral surface charge along with the largest particle size was observed at the optimal dose. This could be explained by particle destabilization and restabilization mechanism as positively charged additives were injected into sludge flocs of negative surface charge. Both soluble EPS concentration and supernatant turbidity also showed the lowest value at the optimal dose. These foulants are believed to be coagulated and entrapped in sludge flocs during flocculation. Chitosan and MPE50 which are cationic polymeric substances showed higher reduction in both soluble EPS and fine particles comparing with ferric chloride.

막오염을 감소시킬 수 있는 첨가제로서 chitosan, 염화제이철, MPE50의 막오염 저감 효과를 비교하여 연구하였다. 세가지 첨가제를 다양한 농도로 활성슬러지에 주입한 후 회분여과실험을 수행하여 막오염 특성의 변화를 평가하였다. Chitosan 20 mg/g-MLSS, 염화제이철 70 mg/g-MLSS, MPE50 20 mg/g-MLSS의 주입량에서 여과저항과 케이크 비저항이 모두 최소화되었는데, 케이크 여과저항 뿐 아니라 파울링 여과저항도 함께 감소하는 양상이 관찰되었다. 그러나 서로 다른 활성슬러지에 chitosan을 첨가하는 세 차례의 실험에서 최적 주입농도는 10, 20, 30 mg/g-MLSS로 서로 다르게 나타나, 최적 주입농도가 상수치가 아니라 활성슬러지의 특성에 영향을 받는 것으로 확인되었다. 세 첨가제 모두 최적 주입농도보다 더 많은 양을 주입한 경우 오히려 막여과 특성이 악화되었다. 첨가제의 주입에 따른 여과저항 감소의 기작을 분석하기 위하여 미생물 플록의 제타 전위, 소수성, 입도분포, 상징수 탁도, 용존성 EPS 등의 다양한 분석을 수행하였다. 최적 주입농도에서 제타전위는 0에 가깝게 그리고 입자크기는 가장 크게 나타났는데, 이러한 결과는 음전하를 띠는 슬러지 플록에 양전하의 첨가제가 주입되면서 미세입자의 불안정화 및 재안정화 메커니즘을 보이는 것으로 해석할 수 있다. 또한 최적 주입농도에서 용존성 EPS 농도와 상징수 탁도는 가장 작은 값이 관찰되었는데, 미생물 플록이 응집하며 성장하는 과정에서 고분자의 EPS와 미세 입자가 포집된 결과로 해석된다. 또한 이러한 효과는 고분자성 양이온물질인 chitosan과 MPE50에서 염화철보다 더 크게 나타났다.

Keywords

Acknowledgement

Supported by : 한국학술진흥재단

References

  1. Rosenberger S., Laabs C., Lesjean B., Gnirss R., Amy G., Jekel M. and Schrotter J.-C. "Impact of colloidal and soluble organic material on membrane performance in membrane bioreactors for municipal wastewater treatment," Water Res., 40(4), 710-720(2006). https://doi.org/10.1016/j.watres.2005.11.028
  2. Lesjean B., Rosenberger S., Laabs C., Jekel M., Gnirss R. and Amy G., "Correlation between membrane fouling and soluble/colloidal organic substances in membrane bioreactors for municipal wastewater treatment," Water Sci. Technol., 51(6-7), 1-8(2005).
  3. Zhang B., Yamamoto K., Ohgaki S. and Kamiko N., "Floc size distribution and bacterial activities in membrane separation activated sludge processes for small scale wastewater treatment/reclamation," Water Sci. Technol., 35(6), 37-44(1997).
  4. Wisnieski C. and Grasmick A., "Floc size distribution in a membrane bioreactor and consequences for membrane fouling," Colloids Surf., 138, 403-411(1998). https://doi.org/10.1016/S0927-7757(96)03898-8
  5. Masse A., Sperandio M. and Cabassud C., "Comparison of sludge characteristics and performance of a submerged membrane bioreactor and an activated sludge process at high solids retention time," Water Res., 40(12), 2405-2415(2006). https://doi.org/10.1016/j.watres.2006.04.015
  6. Fang H. H. P., Shi X. and Zhang T., "Effect of activated carbon on fouling of activated sludge filtration," Desalination, 189(1-3) 193-199(2006). https://doi.org/10.1016/j.desal.2005.02.087
  7. Wu J., Chen F., Huang X., Geng W. and Wen X., "Using inorganic coagulants to control membrane fouling in a submerged membrane bioreactor," Desalination, 197(1-3), 124-136(2006). https://doi.org/10.1016/j.desal.2005.11.026
  8. Fan F., Zhou H. and Husain H., "Use of chemical coagulants to control fouling potential for wastewater membrane bioreactor processes," Water Environ. Res., 79(9), 952-957(2007). https://doi.org/10.2175/106143007X194329
  9. Zhang H.-F., Sun B.-S., Zhao X.-H., and Gao Z.-H., "Effect of ferric chloride on fouling in membrane bioreactor," Sep. Purific. Technol., 63(2), 341-347(2008). https://doi.org/10.1016/j.seppur.2008.05.024
  10. Song K.-G., Kim Y. and Ahn K.-H., "Effect of coagulant addition on membrane fouling and nutrient removal in a submerged membrane bioreactor" Desalination, 221(1-3), 467-474(2008). https://doi.org/10.1016/j.desal.2007.01.107
  11. Kawamura S., "Effectiveness of natural polyelectrolytes in water treatment," J. Am. Water Works Assoc., 83(10), 88-91(1991).
  12. Divakaran R. and Sivasankara Pillai V. N., "Flocculation of kaolinite suspension in water by chitosan," Water Res., 35(16), 3904-3908(2001). https://doi.org/10.1016/S0043-1354(01)00131-2
  13. Le Roux I., Krieg H. M., Yeates C. A. and Breytenbach J. C., "Use of chitosan as an antifouling agent in a membrane bioreactor," J. Membr. Sci., 248(1-2), 127-136(2005). https://doi.org/10.1016/j.memsci.2004.10.005
  14. Yoon S.-H. and Collins J. H., "A novel flux enhancing method for membrane bioreactor (MBR) process using polymer" Desalination, 191(1-3), 52-61(2006). https://doi.org/10.1016/j.desal.2005.04.124
  15. Yoon S. H., Collins J, H., Musale D., Sundararajan S., Tsai S. P., Hallsby G. A., Kong J. F., Koppes J. and Cachia P., "Effect of flux enhancing polymer on the characteristics of sludge in membrane bioreactor process" Water Sci. Technol., 51(6-7), 151-157(2005).
  16. Iversen V., Mohaupt J., Drews A., Lesjean B. and Kraume M., "Side effects of flux enhancing chemicals in membrane bioreactors (MBRs) : study on their biological toxicity and their residual fouling propensity" Water Sci. Technol., 57(1), 117-123(2008). https://doi.org/10.2166/wst.2008.660
  17. Koseoglu H., Yigit N. O., Iversen V., Drews A., Kitis M., Lesjean B. and Kraume M., "Effect of several different flux enhancing chemicals on filterability and fouling reduction of membrane bioreactor (MBR) mixed liquor," J. Membr. Sci., 320, 57-64(2008). https://doi.org/10.1016/j.memsci.2008.03.053
  18. Hwang B.-K., Lee W.-N., Park P.-K., Lee C.-H. and Chang I-S., "Effect of membrane fouling reducer on cake structure and membrane permeability in membrane bioreactor" J. Membr. Sci., 288(1-2), 149-156(2007). https://doi.org/10.1016/j.memsci.2006.11.032
  19. Eusebio, R. C., Kim, H. G., Chung, T. H. and Kim, H. S., "Enhancing filterability of flat-sheet membrane by addition of cationic polymer for sludge thickening system," Desalination and Water Treatment, 17, 10-18(2010). https://doi.org/10.5004/dwt.2010.1692
  20. Rosenberg, M., Gutnick D. and Rosenberg E., "Adherence of bacteria to hydrocarbons: a simple method for measuring cell-surface hydrophobicity," FEMS Micorbiol. Lett., 9(1), 29-33(1980). https://doi.org/10.1111/j.1574-6968.1980.tb05599.x
  21. Chang I. S. and Lee C. H., "Membrane filtration characteristics in membrane coupled activated sludge system-The effect of physiological states of activated sludge on membrane fouling," Desalination, 120, 221-223(1998). https://doi.org/10.1016/S0011-9164(98)00220-3
  22. Raunkjær K., T. Hvitved-Jacobsen and P. H. Nielsen, "Measurement of pools of protein, carbohydrate and lipid in domestic wastewater," Water Res., 28, 251-262(1994). https://doi.org/10.1016/0043-1354(94)90261-5
  23. Gaudy A. F., "Colorimetric determination of protein and carbohydrate," Ind. Wat. Wastes, 7, 17-22(1962).
  24. Kwon D. Y., Vigneswaran S., Fane A. G. and Ben Aim R., "Experimental determination of critical flux in cross-flow microfiltration," Sep. Purific. Technol., 19, 169-181(2000). https://doi.org/10.1016/S1383-5866(99)00088-X
  25. Meng, F., Zhang, H., Yang, F., Zhang, S., Li, Y. and Zhang, X., "Identification of activated sludge properties affecting membrane fouling in submerged membrane bioreactors," Sep. Purific. Technol., 51(1), 95-103(2006). https://doi.org/10.1016/j.seppur.2006.01.002
  26. Jin, B., Willen, B.-M. and Lant, P., "A Comprehensive insight into floc characteristics and their impact on compressibility and settleability of activated sludge," Chem. Eng. J., 95, 221-234(2003). https://doi.org/10.1016/S1385-8947(03)00108-6
  27. Mikkelsen, L. H. and Keiding, K., "Physico-chemical characteristics of full scale sewage sludges with implications to dewatering," Water Res., 36, 2451-2462(2002). https://doi.org/10.1016/S0043-1354(01)00477-8
  28. Goldberg, S., Doyle, R. J. and Rogenberg, M., "mechanism of enhancement of microbial cell hydrophobicity by cation polymers," J. Bacteriol., 172(10), 5650-5654(1990). https://doi.org/10.1128/jb.172.10.5650-5654.1990