Browse > Article
http://dx.doi.org/10.5392/JKCA.2021.21.03.609

Effect of Addition of β-TCP on Bioactivity and Mechanical Properties of Biodegradable PLA/β-TCP Composites  

Moon, Hee-Jung (여주대학교 치위생(학)과)
Kim, Seol-Ak (여주대학교 치위생(학)과)
Kim, Dong-Ae (여주대학교 치위생(학)과)
Publication Information
Abstract
The aim of the present study was to investigate the mechanical properties of melt-injected poly lactic acid (PLA) composites with β-tricalcium phosphate (β-TCP). The PLA mixed with calcined PLA/β-TCP powder to be contents of 0, 10, 30, 50 wt%, respectively, was dissolved in chloroform solvent under stirring for 24 h. Then the liquid mixtures were dropped into ethanol to extract solvent. After drying, the well-dispersed PLA/β-TCP composites were granulated and melt-injected to prepare specimens for various mechanical testing. PLA/β-TCP induced the precipitation of an apatite bone-mineral phase on the surface after immersion in a human simulated body fluid (SBF) for 90 days, showing in bioactivity. Mean various mechanical properties PLA/β-TCP composite were increased up to 10-30 wt% with significantly in part and composite were decreased 50 wt% of showing in mechanical properties. In conclusion, Over 30 wt% addition of β-TCP to PLA may be not advisable to improve the mechanical properties of melt-injected polymeric composites. Results indicated that β-TCP can be used considered as potential reinforcing agent for increasing mechanical properties for PLA. Therefore, it was suggest that the additional effects of β-TCP and research on a wide range of substances.
Keywords
PLA; ${\beta}$-TCP; Mechanical Properties; Bioactivity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 박종순, 강순국, "공중합 합성된 PLGA 멤브레인의 생분해에 관한 연구," 한국산학기술학회 학술대회논문집, pp.561-563, 2014.
2 어진원, 한혁, 서주환, 이준우, "고분자 생체재료의 시장동향 분석과 전망," Biomaterials Research, 제16권, 제3호, pp.108-111, 2012.
3 김상헌, 김수현, "생체기능성 생분해성 고분자," Polymer Science and Technology, 제18권, 제5호, pp.450-457, 2007.
4 김미경, 표면미네랄화를 통한 생분해성 합성고분자의 골조직 재생 응용연구, 단국대학교, 석사학위논문, 2006.
5 장상희, "생분해성 고분자 나노복합체의 형태학 및 기계적 특성 연구," 한국청정기술학회, 제19권, 제4호, pp.401-409, 2013.
6 김태진, 김태희, 김상구, 서관호, "PLA/PBAT/MEA 블렌드의 구조변화 및 열적, 기계적 성질," 한국고분자학회, 제40권, 제3호, pp.371-379, 2016.
7 A. Rakovsky, I. Gotman, E. Rabkin, and E. Y. Gutmanas, "β-TCP-polylactide composite scaffolds with high strength and enhanced permeability prepared by a modified salt leaching method. journal of the mechanical behavior of biomedical materials," J Clin Periodont, Vol.32, No.4, pp.89-98, 2014.
8 진형호, 민상호, 박홍채, 윤석영, "마이크로파에 의한 생분해성 A-TCP/PLGA 복합체의 제조시 β-TCP 첨가량에 따른 영향," Korean Journal of Materials Research, 제16권, 제1호, pp.331-334, 2006.
9 C. E. Corcione, F. Scalera, F. Gervaso, F. Montagna, A. Sannino, and A. Maffezzoli, "One-step solvent-free process for the fabrication of high loaded PLA/HA composite filament for 3D printing," Journal of Thermal Analysis and Calorimetry, Vol.134, No.1, pp.575-582, 2018.   DOI
10 J. O. Akindoyo, M. D. Beg, S. Ghazali, H. P. Heim, and M. Feldmann, "Impact modified PLA-hydroxyapatite composites-Thermo-mechanical properties," Composites Part A: Applied Science and Manufacturing, Vol.107, No.1, pp.326-333, 2018.   DOI
11 E. H. Backes, de Nobile Pires, H. S. Selistre, de Araujo, and L. C. Costa, "Development and characterization of printable PLA/β-TCP bioactive," International journal of nanomedicine, Vol.35, No.3, pp.273-284, 2008.
12 L. Cao, Q. Chen, L. B. Jiang, X. F. Yin, C. Bian, and J. Dong, "Bioabsorbable self-retaining Pla/nano-sized β-TCP cervical spine interbody fusion cage in goat models: An in vivo study," International journal of nanomedicine, Vol.27, No.5, pp.544-558, 2016.
13 S. Eqtesadi, A. Motealleh, F. H. Perera, A. Pajares, and P. Miranda, "Poly-(lactic acid) infiltration of 45S5 Bioglass® robocast scaffolds: Chemical interaction and its deleterious effect in mechanical enhancement," Materials Letters, Vol.163, No.4, pp.196-200, 20016.   DOI
14 S. Singh and S. S. Ray, "Polylactide based nanostructured biomaterials and their applications," J Nanosci Nanotechnol, Vol.7, No.8, pp.2596-2615, 2007.   DOI
15 F. H. Lin, T. M. Chen, C. P. Lin, and C. J. Lee, "The merit of sintered PDLLA/TCP composites in management of bone fracture internal fixation. Artificial organs," Artificial organs, Vol.23, No.2, pp.186-194, 1994.   DOI
16 사민우, 김종영, "압출 적층 조형 기술을 이용한 TCP/HA 의 혼합비율에 따른 바이오 세라믹 인공지지체의 제작 및 특성 연구," 대한기계학회 논문집, 제38권, 제11호, pp.1273-1281, 2014.
17 박광범, 박진우, 안현욱, 양동준, 최석규, 장일성, 서조영, "미세다공성 Biphasic calcium phosphate ceramics 의골이식 대체재로서의 기본특성에 대한 비교연구," 대한치주과학회지, 제36권, 제4호, pp.69-77, 2006.
18 사민우, 김종영, "3 차원 Blended PCL (60 wt%)/β-TCP (40 wt%) 인공지지체의 제작 및 특성 평가," 대한기계학회 논문집 A 권, 제38권, 제4호, pp.371-377, 2014.
19 진형호, 조직공학용 Calcium Phosphate 기반 유/무기 지지체의 제조 및 생체활성에 관한 연구, 부산대학교, 박사논문학위, 2011.
20 J. C. Le Huec, E. Lesprit, C. Delavigne, D. Clement, D. Chauveaux, and A. Le Rebeller, "Tricalcium phosphate ceramics and allografts as bone substitutes for postero-lateral spine fusion in idiopathic scoliosis: Comparative clinical results at 4 years," Acta Orthop Belg, Vol.63, No.3, pp.202-211, 1997.
21 D. M. Zuev, E. S. Klimashina, P. V. Evdokimov, Y. Y. Filippov, and V. I. Putlyaev, "Mechanical Characteristics of Composites Based on β-Ca3(PO4)2/Poly (D, L-Lactide) and β-Ca3(PO4)2/Poly(ε-Caprolactone)," Inorganic. Materials: Applied Research, Vol.10, No.1, pp.109-113, 2019.   DOI