• Title/Summary/Keyword: Polymeric chain

Search Result 85, Processing Time 0.022 seconds

Novel Approaches of Modified Poly (4-vinylphenol) for Low Hysteresis Organic Thin Film Transistors

  • Kim, Hyoung-Jin;Kim, Doo-Hyun;Kim, Byung-Uk;Kim, We-Yong;Kim, Ho-Jin;Hong, Mun-Pyo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1305-1307
    • /
    • 2009
  • We have investigated the new modification of poly (vinyl phenol) (PVP) for low hysteresis organic thin film transistors (OTFTs). In order to suppression of hysteresis phenomenon, synthesized various backbone structure polymeric gate dielectric. The modified polymeric dielectric was synthesized by inducing ringshape phenol backbone structure instead of conventional chain. We could be observed that relieved hysteresis and excellent air stability from ring-shape phenol backbone structure.

  • PDF

Electrochromic Pattern Formation by Photo Cross-linking Reaction of PEDOT Side Chains

  • Kim, Jeong-Hun;Kim, Yu-Na;Kim, Eun-Kyoung
    • Macromolecular Research
    • /
    • v.17 no.10
    • /
    • pp.791-796
    • /
    • 2009
  • An electrochemically and photochemically polymerizable monomer, 2-((2,3-dihydrothieno[3,4-b] [1,4]dioxin-2-yl)methoxy)ethyl methacrylate (EDOT-EMA), was explored for patterning of poly(3,4-ethylenedioxythiophene) (PEDOT) via side chain cross-linking. The polymer from EDOT-EMA was deposited electrochemically to produce polymeric EDOT (PEDOT-EMA), which was directly photo-patterned by UV light as the side EMA groups of PEDOT-EMA were polymerized to give cross-linked EMA (PEDOT-PEMA). Absorption and FTIR studies of the UV-exposed film (PEDOT-PEMA) indicated that the photo-patterning mainly originated from the photo cross-linking of the methacrylates in the side-chain. After irradiation of the film, the conductivity of the irradiated area decreased from $5.6{\times}10^{-3}$ S/cm to $7.2{\times}10^{-4}$ S/cm, possibly due to bending of the conductive PEDOT channel as a result of the side chain cross-linking. The patterned film was applied to a solid state electrochromic (EC) cell to obtain micro-patterned EC cells with lines up to 5 ${\mu}m$ wide.

Successive Synthesis of Well-Defined Star-Branched Polymers by an Iterative Approach Based on Living Anionic Polymerization

  • Higashihara Tomoya;Inoue Kyoichi;Nagura Masato;Hirao Akira
    • Macromolecular Research
    • /
    • v.14 no.3
    • /
    • pp.287-299
    • /
    • 2006
  • To successively synthesize star-branched polymers, we developed a new iterative methodology which involves only two sets of the reactions in each iterative process: (a) an addition reaction of DPE or DPE-functionalized polymer to a living anionic polymer, and (b) an in-situ reaction of 1-(4-(4-bromobutyl)phenyl)-1-phenylethylene with the generated 1,1-diphenylalkyl anion to introduce one DPE functionality. With this methodology, 3-, 4-, and 5-arm, regular star-branched polystyrenes, as well as 3-arm ABC, 4-arm ABCD, and a new 5-arm ABCDE, asymmetric star-branched polymers, were successively synthesized. The A, B, C, D, and E arm segments were poly(4-trimethylsilylstyrene), poly(4-methoxystyrene), poly(4-methylstyrene), polystyrene, and poly(4-tert-butyldimethylsilyloxystyrene), respectively. All of the resulting star-branched polymers were well-defined in architecture and precisely controlled in chain length, as confirmed by SEC, $^1H$ NMR, VPO, and SLS analyses. Furthermore, we extended the iterative methodology by the use of a new functionalized DPE derivative, 1-(3-chloromethylphenyl)-1-((3-(1-phonyletheny1)phenyl) ethylene, capable of introducing two DPE functionalities via one DPE anion reaction site in the reaction (b). The number of arm segments of the star-branched polymer synthesized by the methodology could be dramatically increased to 2, 6, and up to 14 by repeating the iterative process.

Preparation and Properties of Segmented Polyurethane Elastomers with Two Different Soft Segments

  • Lee, Tae-Jung;Huh, Jae-Ho;Kim, Han-Do
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 1998.04a
    • /
    • pp.1-4
    • /
    • 1998
  • Segmented Polyurethanes Elastomers are a class of polymers having interesting properties which arise from their unique phase-separated structures resulting from the thermodynamic incompatibility of the ingredients[1]. Segmented polyurethane Elastomer generally consists of a segment derived from a polymeric diol and a hard segment from a diisocyanate and a low molecular weight diol(chain extender).(omitted)

  • PDF

Wholly Aromatic Polyesters Containing NLO Chromophores in the Side Chain

  • Lee, Seok Hyeon;Im, Gi Cheon;Jeon, Jong Taek;Song, Seok Jeong
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.1
    • /
    • pp.11-15
    • /
    • 1996
  • A series of poly(1,4-phenylene terephthalates) with pendant NLO chromophores was prepared by the solution polycondensation of 2,5-NLO chromophore substituted terephthalic acid with hydroquinone. The polymers obtained gave satisfactory NMR and elemental analysis results when taking into account their expected structures and the inherent viscosity value proved the polymeric character of all polymers. DSC, optical polarizing microscopy and WAXS studies revealed that none of these polymers exhibited liquid crystalline mesophases. Preliminary results on NLO properties of these polymers showed a surprisingly large second harmonic signal relative to a Y-cut quartz plate.

Synthesis and Characterization of ${\omega}-Sulfonated$ Polystyrene-stabilized Cadmium Sulfide Nanoclusters

  • Jin Yong Hyun;Kim Jungahn;Im Seung Soon
    • Macromolecular Research
    • /
    • v.12 no.6
    • /
    • pp.604-607
    • /
    • 2004
  • We report an important and useful method for preparing ${\omega}-sulfonated$ polystyrene-stabilized cadmium sulfide (CdS) nanoclusters. The ${\omega}-sulfonated$ polystyrene $(M_n\;=\;5000\;g/mol)$ was prepared successfully through chain-end sulfonation of poly(styryl)lithium using 1,3-propanesultone; the resulting polymer was used successfully as a polymeric stabilizing agent for the preparation of semiconductor CdS nanoclusters by reduction of cadmium acetate in a mixture of toluene and methanol (9:1, v/v). The nanoclusters that formed were characterized by a combination of transmission electron microscopy, X-ray diffraction, and UVN is spectroscopic analysis. The ${\omega}-sulfonated$ polystyrene-stabilized CdS nanoclusters synthesized in this study exhibited the cubic phase (zinc-blende phase) structure in the range of 2-8 nm.

Oxidative Coupling Polymerization of Diethynylsilane Derivatives and 1,2-Diethynyl-1,1,2,2-tetramethyldisilane

  • Kim, Ji-Ho;Park, Young-Tae
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.6
    • /
    • pp.869-874
    • /
    • 2006
  • We have carried out the Glaser oxidative coupling polymerizations of diethynyldiphenylsilane, diethynylmethylphenylsilane,diethynylmethyloctylsilane, and 1,2-diethynyl-1,1,2,2-tetramethyldisilane to afford polycarbosilanes containing diethynyl and organosilane groups in the main chain, such as poly(diethynyldiphenylsilane), poly(diethynylmethylphenylsilane), poly(diethynylmethyloctylsilane), and poly(1,2-diethynyl-1,1,2,2-tetramethyldisilane), respectively. These obtained materials are almost insoluble in common organic solvents such as $CHCl_3$ and THF probably due to the presence of a rigid rod diacetylene group along the polymer main chain. Therefore, the polymers were characterized using several spectroscopic methods in solid state. FTIR spectra of all the polymeric materials show that the characteristic $C \equiv C$ stretching frequencies appear at 2147-2154 $cm ^{-1}$, in particular. The polymers in the solid state exhibit that the strong maximum excitation peaks appear at 260-283 nm and the strong maximum fluorescence emission bands at 367-412 nm, especially. Thermogravimetric analysis of the materials shows that about 55-68% of the initial polymer weights remain at 400 ${^{\circ}C}$ in nitrogen.

The Correlation between Gas Transport Properties and Physical Properties of Modified Polysulfones (변형 폴리술폰의 기체 투과 성질과 물리적 성질의 상관관계)

  • ;;;;;Guiver, Michael D.;R
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1997.10a
    • /
    • pp.67-68
    • /
    • 1997
  • 1. Introduction : Gas transport through dense polymeric membranes is predominantly determined by the chain packing density as well as the chain flexibility. Thus, improved permeation properties can be obtained by controlling these two factors. In this work, the introduction of bulky substituents was attempted to improve permeation properties. Polysulfone, widely used material for gas separation membrane, was the starting material of this modification. Gas transport properties of resulting modified polysulfones were examined, and the improved properties were explained by probing the change of physical properties.

  • PDF

Effect of Side Chain Structure of Gate Insulator on Characteristics of Organic Thin Film Transistor

  • Yi, Mi-Hye;Ha, Sun-Young;Pyo, Seung-Moon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.487-490
    • /
    • 2006
  • We propose a new method to achieve well-defined surface properties of the polymeric gate dielectrics without using SAM technique and inserting another organic/inorganic buffer layer. Pentacene thin film transistors(OTFTs) fabricated with the polyimide gate insulators with different side chain structures were demonstrated. Further, a relationship between the surface properties (surface morphology, surface energy, etc) of the films and the performance of OTFTs have investigated, which will be given in more detail in presentation.

  • PDF

Reactions and Properties of Fullerene ($C_{60}$) (풀러렌의 성질과 반응)

  • Lim, Choong-Sun;Hong, Seong-Kyu;Ko, Weon-Bae
    • Elastomers and Composites
    • /
    • v.45 no.2
    • /
    • pp.74-79
    • /
    • 2010
  • In this review, the properties of buckminsterfullerene and its organic and polymeric reactions were focused. In addition, polymer blending with $C_{60}$ will be briefly introduced. As soon as $C_{60}$ was discovered, chemists put their efforts to explore its reactivity with other compounds. The knowledge of the organic reactions with $C_{60}$ was extended to construct different types of fullerene polymers such as side chain fullerene polymers, main chain fullerene polymers, star shaped fullerene polymers, and dendritic fullerene polymers.