• Title/Summary/Keyword: Polymer-reinforced

Search Result 1,252, Processing Time 0.022 seconds

An Experimental Study on the Flexural Behavior of One-Way Concrete Slabs Using the Restorative Mortar and Crimped Wire Mesh (크림프 철망 및 단면복구 보수 모르타르를 사용한 일방향 슬래브의 휨 거동에 관한 실험적 연구)

  • Lee, Mun-Hwan;Song, Tae-Hyeob
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.5
    • /
    • pp.569-575
    • /
    • 2007
  • The repair of concrete surfaces does not normally take into account structural tolerance for longer service lift and better capabilities of concrete structures. In particular, the repair of surface spelling completes as mortar is applied, which does not display additional structural performances. The use of crimped wire mesh for better construction and fracture resistance, however, expects to have some reinforcement effects. Particularly, it is also expected that the repair of bottom part in structures built between bridges like irrigation structures results in the increase of flexural resistance. Therefore, this study is intended to perform the repair using crimp wire mesh and examine strength depending on the repair section and depth. For this, a slab with 150 mm in depth, 3,000 mm in length and 600 mm in width and total 8 objects to experiment such as upper part, upper whole, bottom part, bottom whole and crimp wire mesh reinforced are manufactured to perform flexural performance. The results of the analysis show that yield strength and failure load increase as the depth of repair materials in the experiment reinforced with crimp wire mesh get bigger. In the same condition, repair of bottom part is able to increase internal force of bending force. Besides, the results show that partial repair of structures under bending force cannot produce flexural performance. Consequently, the repair method with crimp wire mesh results in the increase of flexural resistance.

Optimum Conditions for Improvement of Mechanical and Interfacial Properties of Thermal Treated Pine/CFRP Composites (열처리된 Pine/탄소섬유 복합재료의 기계적 및 계면물성 향상을 위한 최적 조건)

  • Shin, Pyeong-Su;Kim, Jong-Hyun;Park, Ha-Seung;Baek, Yeong-Min;Kwon, Dong-Jun;Park, Joung-Man
    • Composites Research
    • /
    • v.30 no.4
    • /
    • pp.241-246
    • /
    • 2017
  • The brittle nature in most FRP composites is accompanying other forms of energy absorption mechanisms such as fibre-matrix interface debonding and ply delamination. It could play an important role on the energy absorption capability of composite structures. To solve the brittle nature, the adhesion between pines and composites was studied. Thermal treated pines were attached on carbon fiber reinforced polymer (CFRP) by epoxy adhesives. To find the optimum condition of thermal treatment for pine, two different thermal treatments at 160 and $200^{\circ}C$ were compared to the neat case. To evaluate mechanical and interfacial properties of pines and pine/CFRP composites, tensile, lap shear and Izod test were carried out. The bonding force of pine grains was measured by tensile test at transverse direction and the elastic wave from fracture of pines was analyzed. The mechanical, interfacial properties and bonding force at $160^{\circ}C$ treated pine were highest due to the reinforced effect of pine. However, excessive thermal treatment resulted in the degradation of hemicellulose and leads to the deterioration in mechanical and interfacial properties.

Model for fiber Cross-Sectional Analysis of FRP Concrete Members Based on the Constitutive Law in Multi-Axial Stress States (다축응력상태의 구성관계에 기초한 FRP 콘크리트 부재의 층분할 단면해석모델)

  • 조창근;김영상;배수호;김환석
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.6
    • /
    • pp.892-899
    • /
    • 2002
  • Among the methods for enhancement of load-carrying capacity on flexural concrete member, recently, a concept is being investigated which replaces the steel in a conventional reinforced concrete member with a fiber reinforced polymer(FRP) shell. This study focuses on modeling of the structural behavior of concrete surrounded with FRP shells in flexural bending members. A numerical model of fiber cross-sectional analysis is proposed to predict the stress and deformation state of the FRP shell and concrete. The stress-strain relationship of concrete confined by a FRP shell is formulated to be based on the constitutive law of concrete in multi-axial compressive stress state, in assuming that the compression response is dependent on the radial expansion of the concrete. To describe the FRP shell behavior, equivalent orthotropic properties of in-plane behavior from classical lamination theory are used. The present model is validated to compare with the experiments of 4-point bending tests of FRP shell concrete beam, and has well predicted the moment-curvature relationships of the members, axial and hoop strains in the section, and the enhancement of confinement effect in concrete surrounded by FRP shell.

Flexural Performance of Slabs Strengthened by Fiber-Reinforced Polymer Sheet with Hydrophilic Epoxy (친수성 에폭시를 사용하여 FRP 시트로 보강된 슬래브의 휨거동 평가)

  • Ju, Hyunjin;Han, Sun-Jin;Cho, Hae-Chang;Lee, Deuck Hang;Kim, Kang Su
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.1
    • /
    • pp.85-94
    • /
    • 2016
  • In this study, the hydrophilic chemical grout using silanol (HCGS) was introduced to overcome the limitations of conventional epoxy resin which have been used for strengthening reinforced concrete (RC) structures. Then, flexural tests on the RC slabs strengthened by FRP sheets were conducted. Three slab specimens were tested in this study; a control specimen with no strengthening, and two specimens strengthened by a typical epoxy resin or HCGS, respectively, as a binder between the slabs and the FRP sheets. In addition, an analytical model was developed to evaluate the flexural behavior of strengthened slab members, considering the horizontal shear force at the interface between concrete slabs and FRP sheets. The analysis results obtained from the proposed model indicated that the strengthened specimens showed fully composite behavior before their flexural failure. Especially, the specimen strengthened by HCGS, which can overcome the limitations of conventional epoxy resin, showed a similar flexural performance with that strengthened by a conventional epoxy resin.

Stress-Strain Behavior Characteristics of Concrete Cylinders Confined with FRP Wrap (FRP로 횡구속된 콘크리트의 응력-변형률 거동 특성)

  • Lee, Dae-Hyoung;Kim, Young-Sub;Chung, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.2
    • /
    • pp.135-144
    • /
    • 2007
  • Recently, fiber-reinforced plastic(FRP) wraps are blown as an effective material for the enhancement and rehabilitation of aged concrete structures. The purpose of this investigation is to experimentally investigate behavior of concrete cylinder wrapped with FRP materials. Experimental parameters include compressive strength of concrete cylinder, FRP material, and confinement ratio. This paper presents the results of experimental studies on the performance of concrete cylinder specimens externally wrapped with aramid, carbon and glass fiber reinforced Polymer sheets. Test specimens were loaded in uniaxial compression. Axial load, axial and lateral strains were investigated to evaluate the stress-strain behavior, ultimate strength ultimate strain etc. Test results showed that the concrete strength and confinement ratio, defined as the ratio of transverse confinement stress and transverse strain were the most influential factors affecting the stress-strain behavior of confined concrete. More FRP layers showed the better confinement by increasing the compressive strength of test cylinders. In case of test cylinders with higher compressive strength, FRP wraps increased the compressive strength but decreased the compressive sham of concrete test cylinders, that resulted in prominent brittle failure mode. The failure of confined concrete was induced by the rupture of FRP material at the stain, being much smaller than the ultimate strain of FRP material.

[ $SiO_2$ ] Effect on the Electrochemical Properties of Polymeric Gel Electrolytes Reinforced with Glass Fiber Cloth ($SiO_2$가 유리섬유로 보강된 고분자 겔 전해질의 전기 화학적 특성에 미치는 영향)

  • Park Ho Cheol;Kim Sang Heon;Chun Jong Han;Kim Dong Won;Ko Jang Myoun
    • Journal of the Korean Electrochemical Society
    • /
    • v.4 no.1
    • /
    • pp.6-9
    • /
    • 2001
  • [ $SiO_2$ ] effect on the electrochemical properties of polymeric gel electrolytes(PGEs) reinforced with glass fiber cloth(GFC) was investigated . PGEs were composed of polyacrylronitrile(PAN), poly(vinylidenefluoride-co-hexafluoropropylene) (P(VdF-co-HFP)), $LiClO_4$ and three kind of plasticizer(ethylene carbonate, dietyl carbonate, propylene carbonate). $SiO_2$ was added to PGEs in the weight fraction of 10, 20, $30\%$ respectively. PGEs containing $SiO_2$ showed conductivity of over $10^{-3}S/cm\;at\;23^{\circ}C$ and electrochemical stability window to 4.8V. In the impedance spectra of the cells, which were constructed by lithium metals as electrodes, interfacial resistance increased due to growth of passivation layer during storage time and remarkable difference was not observed with content of $SiO_2$. In the impedance spectra of the lithium ion polymer batteries consisted of $LiClO_2$ and mesophase pitch-based carbon fiber(MCF), ohmic cell resistance of $SiO_2-free$ PGE was changed continuously with number of cycle, but those of $SiO_2-dispersed$ PGEs were not. Discharge capacity of the PGE containing $20wt\%\;SiO_2$ showed 132 mAh/g at 0.2C rate and $85\%$ of discharge capacity was retained at 2C rate.

Improving Charge Injection Characteristics and Electrical Performances of Polymer Field-Effect Transistors by Selective Surface Energy Control of Electrode-Contacted Substrate (에폭시 개질 한 다관능 아크릴레이트를 포함하는 충격 저항성이 향상된 불포화폴리에스터 SMC (Sheet Molding Compound) 소재제조 및 그의 물성연구)

  • Jang, Jeong Beom;Kim, Taehee;Kim, Hye Jin;Lee, Wonjoo;Seo, Bongkuk;Kim, Yongsung;Kim, Changyoon;Lim, Choong-Sun
    • Journal of Adhesion and Interface
    • /
    • v.21 no.3
    • /
    • pp.101-106
    • /
    • 2020
  • In this study, epoxy-modified acrylate was synthesized. The synthesized acrylate was added to the composition for sheet molding compound (SMC) in the range of 5 phr to 15 phr. The prepared SMC prepreg was molded at high temperature and pressure to produce a glass fiber reinforced composite. Physical properties such as tensile and impact strength of the composite were measured, respectively. Experimental data show that the composite with 5 phr of synthesized acrylate has 20% improved tensile strength and 12% improved impact strength than that of the reference sample.

Evaluation on the Performance of Coating Materials for Improving the Durability of Concretes (콘크리트의 내구성 증진을 위한 코팅재의 성능 평가)

  • Kim, Sung-Soo;Choi, Choon-Sik;Nam, Yong-Hyuk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.4
    • /
    • pp.99-107
    • /
    • 2003
  • Normally coating is used a method for protecting reinforced concrete. For this purpose, organic as well as inorganic coatings are used. The advantages of inorganic coatings are lower absorption of UV, non-burning etc. On the other hand, organic coatings have the advantage of low permeability of $CO_2$, $SO_2$ and water. Organic coatings provide better protection for reinforced concrete. However, in organic coatings such as epoxy, urethane and acryl, long-term adhesive strength is reduced and the formed membrane of those is blistered by various causes. Also when organic coatings are applied to the wet surface of concrete, they have a problem with adhesion. So, we developed coating material, WGS-Eco which was hybridized with polymer and cement based material to protect concrete structures and solve problems of organic coatings. This study was conducted an comparative evaluation on physical and durable performance of developed coating material and previously used coating materials. As a result, the performance of developed coating material was not inferior to organic coating materials. So, the developed coating material was considered as a suitable coating material which had advantages of inorganic and organic coatings for protecting concrete.

Study on Flexural Properties of Polyamide 12 according to Temperature produced by Selective Laser Sintering (선택적 레이저 소결 제작 폴리아미드 12 시편의 온도별 굴곡 특성 연구)

  • Kim, Moosun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.11
    • /
    • pp.319-325
    • /
    • 2018
  • The use of 3D printing (Additive Manufacturing) technology has expanded from initial model production to the mass production of parts in the industrial field based on the continuous research and development of materials and process technology. As a representative polymer material for 3D printing, the polyamide-based material, which is one of the high-strength engineering plastics, is used mainly for manufacturing parts for automobiles because of its light weight and durability. In this study, the specimens were fabricated using Selective Laser Sintering, which has excellent mechanical properties, and the flexural characteristics were analyzed according to the temperature of the two types of polyamide 12 and glass bead reinforced PA12 materials. The test specimens were prepared in the directions of $0^{\circ}$, $45^{\circ}$, and $90^{\circ}$ based on the work platform, and then subjected to a flexural test in three test temperature environments of $-25^{\circ}C$, $25^{\circ}C$, and $60^{\circ}C$. As a result, PA12 had the maximum flexural strength in the direction of $90^{\circ}$ at $-25^{\circ}C$ and $0^{\circ}$ at $25^{\circ}C$ and $60^{\circ}C$. The glass bead-reinforced PA12 exhibited maximum flexural strength values at all test temperatures in the $0^{\circ}$ fabrication direction. The tendency of the flexural strength changes of the two materials was different due to the influence of the plane direction of the lamination layer depending on the type of stress generated in the bending test.

A Study on Irreversible Degradation through OCV Reduction and Recovery Behavior in the Electrochemical Degradation Process of PEMFC Polymer Membrane (PEMFC 고분자 막의 전기화학적 열화과정에서 OCV 감소 및 회복 거동을 통한 비가역적 열화 연구)

  • Yoo, Donggeun;Park, Kwon-Pil
    • Korean Chemical Engineering Research
    • /
    • v.60 no.2
    • /
    • pp.217-222
    • /
    • 2022
  • It is very important to analyze the OCV change behavior during the open circuit potential holding (OCV holding) process, which accelerates the evaluation of the electrochemical durability of the PEMFC membrane. In this study, an empirical formula using the experimental data of three MEAs with different durability was created and compared. The durability evaluation time of the reinforced membrane MEA without radical scavenger inside the membrane was 383 h, and the durability evaluation time of the reinforced membrane MEA with radical scavenger inside the membrane was 1,000 and 1,650 h, respectively. The degradation of the membrane was divided into the reversible degradation that can be recovered by activation and the irreversible degradation that is not recovered. The irreversible degradation of the membrane was indicated by an increase in hydrogen permeability, and the change in hydrogen permeability was similar to the irreversible degradation constant c of all three MEAs. The initiation of irreversible deterioration without recovery is indicated by an increase in hydrogen permeability, and the OCV is not recovered due to an increase in hydrogen permeability, so the slope of the OCV recovery line (ORL) decreases, which can be confirmed by an increase in the constant c value of the empirical formula.