• 제목/요약/키워드: Polymer-matrix composites

검색결과 472건 처리시간 0.032초

The Electrical Property of Polymer Matrix Composites Added Carbon Powder

  • Shin, Soon-Gi
    • 한국재료학회지
    • /
    • 제25권12호
    • /
    • pp.678-682
    • /
    • 2015
  • The electrical property of polymer matrix composites with added carbon powder is studied based on the temperature dependency of the conduction mechanism. The temperature coefficient of the resistance of the polymer matrix composites below the percolation threshold (x) changed from negative to positive at 0.20 < x < 0.21; this trend decreased with increasing of the percolation threshold. The temperature dependence of the electrical property(resistivity) of the polymer matrix composites below the percolation threshold can be explained by using a tunneling conduction model that incorporates the effect of the thermal expansion of the polymer matrix composites into the tunneling gap. The temperature coefficient of the resistance of the polymer matrix composites above the percolation threshold has a positive value; its absolute value increased with increasing volume fraction of carbon powder. By assuming that the electrical conduction through the percolating paths is a thermally activated process and by incorporating the effect of thermal expansion into the volume fraction of the carbon power, the temperature dependency of the resistivity above the percolation threshold can be well explained without violating the universal law of conductivity.

A Review on the Flammability and Flame Retardant Properties of Natural Fibers and Polymer Matrix Based Composites

  • Prabhakar, M.N.;Shah, Atta Ur Rehaman;Song, Jung-Il
    • Composites Research
    • /
    • 제28권2호
    • /
    • pp.29-39
    • /
    • 2015
  • Natural fibers reinforced polymer composites are being used in several low strength applications. More research is going on to improve their mechanical and interface properties for structural applications. However, these composites have serious issues regarding flammability, which are not being focused broadly. A limited amount of literature has been published on the flame retardant techniques and flammability factor of natural fibers based polymer matrix composites. Therefore, it is needed to address the flammability properties of natural fibers based polymer composites to expand their application area. This paper summarizes some of the recent literature published on the subject of flammability and flame retardant methods applied to natural fibers reinforced polymer matrix composites. Different factors affecting the flammability, flame retardant solutions, mechanisms and characterization techniques have been discussed in detail.

리그노셀룰로오스 섬유/열가소성 고분자 복합재의 계면 현상 (Interfacial Phenomena of Lignocellulose Fiber/Thermoplastic Polymer Composites)

  • 손정일;양한승;김현중
    • 접착 및 계면
    • /
    • 제3권4호
    • /
    • pp.44-52
    • /
    • 2002
  • Composite materials are created by combining two or more component to achieve desired properties which could not be obtained with the separate components. The use of reinforcing fillers, which can reduce material costs and improve certain properties, is increasing in thermoplastic polymer composites. Currently, various inorganic fillers such as talc, mica, clay, glass fiber and calcium carbonate are being incorporated into thermoplastic composites. Nevertheless, lignocellulose fibers have drawn attention due to their abundant availability, low cost and renewable nature. In recent, interest has grown in composites made from lignocellulose fiber in thermoplastic polymer matrices, particularly for low cost/high volume applications. In addition to high specific properties, lignocellulose fibers offer a number of benefits for lignocellulose fiber/thermoplastic polymer composites. These include low hardness, which minimize abrasion of the equipment during processing, relatively low density, biodegradability, and low cost on a unit-volume basis. In spite of the advantage mentioned above, the use of lignocellulose fibers in thermoplastic polymer composites has been plagued by difficulties in obtaining good dispersion and strong interfacial adhesion because lignocellulose fiber is hydrophilic and thermoplastic polymer is hydrophobic. The application of lignocellulose fibers as reinforcements in composite materials requires, just as for glass-fiber reinforced composites, a strong adhesion between the fiber and the matrix regardless of whether a traditional polymer matrix, a biodegradable polymer matrix or cement is used. Further this article gives a survey about physical and chemical treatment methods which improve the fiber matrix adhesion, their results and effects on the physical properties of composites. Coupling agents in lignocellulose fiber and polymer composites play a very important role in improving the compatibility and adhesion between polar lignocellulose fiber and non-polar polymeric matrices. In this article, we also review various kinds of coupling agent and interfacial mechanism or phenomena between lignocellulose fiber and thermoplastic polymer.

  • PDF

Polymer matrices for carbon fiber-reinforced polymer composites

  • Jin, Fan-Long;Lee, Seul-Yi;Park, Soo-Jin
    • Carbon letters
    • /
    • 제14권2호
    • /
    • pp.76-88
    • /
    • 2013
  • Carbon fibers (CFs) have high service temperature, strength, and stiffness, and low weight. They are widely used as reinforcing materials in advanced polymer composites. The role of the polymer matrix in the composites is to provide bulk to the composite laminate and transfer load between the fibers. The interface between the CF and the resin matrix plays a critical role in controlling the overall properties of the composites. This paper aims to review the synthesis, properties, and applications of polymer matrices, such as thermosetting and thermoplastic resins.

섬유강화 복합재료의 물성향상을 위한 몰비가 다른 매트릭스 수지에 관한 연구 (Matrix Resin Systems with Different Molar Ratios to Improve the Properties of Fiber-reinforced Composites)

  • 이상효;이장우
    • 폴리머
    • /
    • 제24권4호
    • /
    • pp.459-468
    • /
    • 2000
  • 유리 또는 아라미드 섬유를 보강재로 사용한 섬유강화 복합재료의 기계적 물성을 증진시키기 위하여 복합재료 적층판을 서로 다른 매트릭스 수지와 섬유를 선정하여 이들의 인장, 굴곡 특성을 조사하였다. 불포화 폴리에스테르와 개질된 표면의 아라미드 섬유 복합재료의 경우, 굴곡 물성의 최대값은 실란 농도가 0.5 wt%일 때 관찰되었다. 불포화 폴리에스테르 수지와 유리섬유 복합재료의 인장 물성은 vinylester계가 가장 높게 나타났으며, 굴곡물성은 isophthalic계가 가장 높은 물성을 나타내었다. 유리섬유와 불포화 폴리에스테르 수지 복합재료의 기계적 물성을 증진시키기 위해 겹침 적층판과 기계적 물성과의 상관 관계에 대해서도 연구가 병행되었다.

  • PDF

탄소나노튜브-폴리머 복합체의 기능화와 제조방법 (The Functionalization and Preparation Methods of Carbon Nanotube-Polymer Composites: A Review)

  • 오원춘;고원배;장봉군
    • Elastomers and Composites
    • /
    • 제45권2호
    • /
    • pp.80-86
    • /
    • 2010
  • 탄소나노튜브는 우수한 기계적 특성, 전기적 및 자기적 성질 뿐만 아니라 나노 크기의 직경 및 높은 종횡비를 나타낸다. 이는 고강도 고분자 복합체의 이상적인 보강제로 사용할 수 있다. 기능성이 부과된 탄소나노튜브는 기능성 재료 및 복합재료의 제조와 같은 분야에서 아주 유력한 재료로 믿어진다. 탄소나노튜브-고분자 복합체는 탄소나노튜브의 우수한 기능성과 고분자의 우수한 가공성을 가질 것으로 기대된다. 그러나, 탄소나노튜브는 보통 반 델 바알스 작용에 의한 안정화된 번들을 형성하기 때문에 고분자 기지에 배열이나 분산이 상당히 어렵다. 탄소나노튜브 강화복합체의 제조에서 가장 큰 이슈는 고분자내에 탄소나노튜브의 효과적인 분산이며, 기지내에 탄소나노튜브의 배열과 양의 조절이다. 고분자 기지내에 탄소나노튜브의 분산은 용액혼합, 벌크 혼합, 용융혼합, 즉시 고분자화 반응 및 탄소나노튜브의 화학적 기능화 등과 같은 몇 가지 방법이 있다. 본 논평에서는 이들 방법과 고성능 탄소나노튜브-고분자 복합체의 제조에 대하여 서술하고자 한다.

보수.보강에 사용하는 무기계 폴리머 복합재료의 내열성능 (Fire Resistance of Inorganic Polymer Composites for Repair and Rehabilitation)

  • ;정란
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1997년도 가을 학술발표회 논문집
    • /
    • pp.647-652
    • /
    • 1997
  • Repair and rehabilitation of existing structures is becoming a major part of construction, both in the industrially developed and developing countries. Advanced high strength composites are being utilized more and more for these applications because they are much stronger than steel, non-corrosive, and light. The light weight reduces the construction cost and time sustantially. The fibers are normally made of aramid, carbon, or glass and the binders are typically epoxies or esters. One major disadvantage of these composites is the vulnerability to fire. In most instance, the temperature cannot exceed $300^{\cire}C$. Since carbon and glass can substain high temperatures, an inorganic polymer is being evaluated for use as a matrix. The matrix can sustain more than $1000^{\cire}C$. The results reported in this paper deal with the mechanical properties of carbon composites made with the inorganic polymer and the behavior strengthened reinforced concrete beams. The results indicate that the new matrix can be successfully utilized for a number of applications.

  • PDF

A review of the preparation and properties of carbon nanotubes-reinforced polymer compositess

  • Jin, Fan-Long;Park, Soo-Jin
    • Carbon letters
    • /
    • 제12권2호
    • /
    • pp.57-69
    • /
    • 2011
  • Carbon nanotubes (CNTs) have high Young's modulus, low density, and excellent electrical and thermal properties, which make them ideal fillers for polymer composites. Homogeneous dispersion of CNTs in a polymer matrix plays a crucial role in the preparation of polymer composites based on interfacial interactions between CNTs and the polymer matrix. The addition of a small amount of CNTs strongly improves the electrical, thermal, and mechanical properties of the composites. This paper aims to review the processing technology and improvement of properties of CNT-reinforced polymer composites.

Pressure Effects on the Morphology Development of C/C Composites During Carbonization

  • Joo, Hyeok-Jong;Ryu, Seung-Hee;Ha, Hun-Seung
    • Carbon letters
    • /
    • 제1권3_4호
    • /
    • pp.158-164
    • /
    • 2001
  • It is well known that the fabrication process of carbon/carbon composites is very complex. Above all, the carbonization process have major effect on the morphology development of carbon matrix. Carbon/carbon composites of 4-directional fiber preform were fabricated using the coal tar based pitch as a matrix precursor in this study. According to carbonization pressure of 1 bar, 100 bar, 600 bar, and 900 bar, morphological changes of cokes and matrix of composites were discussed. As the carbonization pressure increased to 600 bar, the flow pattern morphology of bulk mesophse was well developed. On the contrary, mosaic pattern morphology was found in case of 900 bar of carbonization pressure. It is confirmed that the carbonization pressure have profound effect on the degree of graphitization and crystal size of carbon matrix. Even in the highly densified carbon/carbon composites, large voids were still found in the matrix pocket region.

  • PDF

Time-dependent and inelastic behaviors of fiber- and particle hybrid composites

  • Kim, Jeong-Sik;Muliana, Anastasia
    • Structural Engineering and Mechanics
    • /
    • 제34권4호
    • /
    • pp.525-539
    • /
    • 2010
  • Polymer matrix composites are widely used in many engineering applications as they can be customized to meet a desired performance while not only maintaining low cost but also reducing weight. Polymers can experience viscoelastic-viscoplastic response when subjected to external loadings. Various reinforcements and fillers are added to polymers which bring out more complexity in analyzing the timedependent response. This study formulates an integrated micromechanical model and finite element (FE) analysis for predicting effective viscoelastic-viscoplastic response of polymer based hybrid composites. The studied hybrid system consists of unidirectional short-fiber reinforcements and a matrix system which is composed of solid spherical particle fillers dispersed in a homogeneous polymer constituent. The goal is to predict effective performance of hybrid systems having different compositions and properties of the fiber, particle, and matrix constituents. A combined Schapery's viscoelastic integral model and Valanis's endochronic viscoplastic model is used for the polymer constituent. The particle and fiber constituents are assumed linear elastic. A previously developed micromechanical model of particle reinforced composite is first used to obtain effective mechanical properties of the matrix systems. The effective properties of the matrix are then integrated to a unit-cell model of short-fiber reinforced composites, which is generated using the FE. The effective properties of the matrix are implemented using a user material subroutine in the FE framework. Limited experimental data and analytical solutions available in the literatures are used for comparisons.