Browse > Article
http://dx.doi.org/10.5714/CL.2011.12.2.057

A review of the preparation and properties of carbon nanotubes-reinforced polymer compositess  

Jin, Fan-Long (School of Chemical and Materials Engineering, Jilin Institute of Chemical Technology)
Park, Soo-Jin (Department of Chemistry, Inha University)
Publication Information
Carbon letters / v.12, no.2, 2011 , pp. 57-69 More about this Journal
Abstract
Carbon nanotubes (CNTs) have high Young's modulus, low density, and excellent electrical and thermal properties, which make them ideal fillers for polymer composites. Homogeneous dispersion of CNTs in a polymer matrix plays a crucial role in the preparation of polymer composites based on interfacial interactions between CNTs and the polymer matrix. The addition of a small amount of CNTs strongly improves the electrical, thermal, and mechanical properties of the composites. This paper aims to review the processing technology and improvement of properties of CNT-reinforced polymer composites.
Keywords
carbon nanotubes; electrical properties; thermal properties; mechanical properties; polymer composites;
Citations & Related Records
Times Cited By KSCI : 12  (Citation Analysis)
연도 인용수 순위
1 Kim YJ, Jang YK, Kim WN, Park M, Kim JK, Yoon HG. Electrical enhancement of polyurethane composites filled with multiwalled carbon nanotubes by controlling their dispersion and damage. Carbon Lett, 11, 96 (2010).   DOI   ScienceOn
2 Paiva MC, Zhou B, Fernando KAS, Lin Y, Kennedy JM, Sun YP. Mechanical and morphological characterization of polymer-carbon nanocomposites from functionalized carbon nanotubes. Carbon, 42, 2849 (2004). doi: 10.1016/j.carbon.2004.06.031.   DOI   ScienceOn
3 Ryan KP, Cadek M, Nicolosi V, Blond D, Ruether M, Armstrong G, Swan H, Fonseca A, Nagy JB, Maser WK, Blau WJ, Coleman JN. Carbon nanotubes for reinforcement of plastics? A case study with poly(vinyl alcohol). Composites Sci Technol, 67, 1640 (2007). doi:10.1016/j.compscitech.2006.07.006.   DOI   ScienceOn
4 Zhang X, Liu T, Sreekumar TV, Kumar S, Moore VC, Hauge RH, Smalley RE. Poly(vinyl alcohol)/SWNT composite film. Nano Lett, 3, 1285 (2003). doi: 10.1021/nl034336t.   DOI   ScienceOn
5 Cadek M, Coleman JN, Ryan KP, Nicolosi V, Bister G, FonsecaA, Nagy JB, Szostak K, Beguin F, Blau WJ. Reinforcement ofpolymers with carbon nanotubes: the role of nanotube surface area.Nano Lett, 4, 353 (2004). doi: 10.1021/nl035009o.   DOI   ScienceOn
6 Kim YY, Yun J, Lee YS, Kim HI. Electro-responsive transdermal drug release of MWCNT/PVA nanocomposite hydrogels. Carbon Lett, 11, 211 (2010).   DOI   ScienceOn
7 Shaffer MSP, Windle AH. Fabrication and characterization of carbon nanotube/poly(vinyl alcohol) composites. Adv Mater, 11, 937 (1999). doi: 10.1002/(sici)1521-4095(199908)11:11<937::aidadma937>3.0.co;2-9.   DOI
8 Safadi B, Andrews R, Grulke EA. Multiwalled carbon nanotube polymer composites: synthesis and characterization of thin films. J Appl Polym Sci, 84, 2660 (2002). doi: 10.1002/app.10436.   DOI   ScienceOn
9 Andrews R, Jacques D, Minot M, Rantell T. Fabrication of carbon multiwall nanotube/polymer composites by shear mixing. Macromolecular Materials and Engineering, 287, 395 (2002). doi: 10.1002/1439-2054(20020601)287:6<395::aid-mame395>3.0.co;2-s.   DOI
10 Xie L, Xu F, Qiu F, Lu H, Yang Y. Single-walled carbon nanotubes functionalized with high bonding density of polymer layers and enhanced mechanical properties of composites. Macromolecules, 40, 3296 (2007). doi: 10.1021/ma062103t.   DOI   ScienceOn
11 Xiong J, Zheng Z, Qin X, Li M, Li H, Wang X. The thermal and mechanical properties of a polyurethane/multi-walled carbon nanotube composite. Carbon, 44, 2701 (2006). doi: 10.1016/j.carbon.2006.04.005.   DOI   ScienceOn
12 Koerner H, Liu W, Alexander M, Mirau P, Dowty H, Vaia RA. Deformation-morphology correlations in electrically conductive carbon nanotube--thermoplastic polyurethane nanocomposites. Polymer, 46, 4405 (2005). doi: 10.1016/j.polymer.2005.02.025.   DOI   ScienceOn
13 Xu M, Zhang T, Gu B, Wu J, Chen Q. Synthesis and properties of novel polyurethane−urea/multiwalled carbon nanotube composites. Macromolecules, 39, 3540 (2006). doi: 10.1021/ma052265+.   DOI   ScienceOn
14 Sen R, Zhao B, Perea D, Itkis ME, Hu H, Love J, Bekyarova E, Haddon RC. Preparation of single-walled carbon nanotube reinforced polystyrene and polyurethane nanofibers and membranes by electrospinning. Nano Lett, 4, 459 (2004). doi: 10.1021/nl035135s.   DOI   ScienceOn
15 Chen W, Tao X. Self-organizing alignment of carbon nanotubes in thermoplastic polyurethane. Macromol Rapid Commun, 26, 1763 (2005). doi: 10.1002/marc.200500531.   DOI   ScienceOn
16 Manchado MAL, Valentini L, Biagiotti J, Kenny JM. Thermal and mechanical properties of single-walled carbon nanotubes-polypropylene composites prepared by melt processing. Carbon, 43, 1499 (2005). doi: 10.1016/j.carbon.2005.01.031.   DOI   ScienceOn
17 Kearns JC, Shambaugh RL. Polypropylene fibers reinforced with carbon nanotubes. J Appl Polym Sci, 86, 2079 (2002). doi:10.1002/app.11160.   DOI   ScienceOn
18 Zhao P, Wang K, Yang H, Zhang Q, Du R, Fu Q. Excellent tensile ductility in highly oriented injection-molded bars of polypropylene/carbon nanotubes composites. Polymer, 48, 5688 (2007). doi:10.1016/j.polymer.2007.07.022.   DOI   ScienceOn
19 McIntosh D, Khabashesku VN, Barrera EV. Benzoyl peroxide initiated in situ functionalization, processing, and mechanical properties of single-walled carbon nanotube−polypropylene composite fibers. J Phys Chem C, 111, 1592 (2007). doi: 10.1021/jp065399d.   DOI   ScienceOn
20 Chang TE, Jensen LR, Kisliuk A, Pipes RB, Pyrz R, Sokolov AP. Microscopic mechanism of reinforcement in single-wall carbon nanotube/polypropylene nanocomposite. Polymer, 46, 439 (2005). doi: 10.1016/j.polymer.2004.11.030.   DOI   ScienceOn
21 Grady BP, Pompeo F, Shambaugh RL, Resasco DE. Nucleation of polypropylene crystallization by single-walled carbon nanotubes. J Phys Chem B, 106, 5852 (2002). doi: 10.1021/jp014622y.   DOI   ScienceOn
22 Shim YS, Park SJ. Influence of glycidyl methacrylate grafted multiwalled carbon nanotubes on viscoelastic behaviors of polypropylene nanocomposites. Carbon Lett, 11, 311 (2010).   DOI   ScienceOn
23 Karevan M, Pucha RV, Bhuiyan MA, Kalaitzidou K. Effect of interphase modulus and nanofiller agglomeration on the tensile modulus of graphite nanoplatelets and carbon nanotube reinforced polypropylene nanocomposites. Carbon Lett, 11, 325 (2010).   DOI   ScienceOn
24 Cooper CA, Ravich D, Lips D, Mayer J, Wagner HD. Distribution and alignment of carbon nanotubes and nanofibrils in a polymer matrix. Composites Sci Technol, 62, 1105 (2002). doi: 10.1016/s0266-3538(02)00056-8.   DOI
25 Wang M, Pramoda KP, Goh SH. Enhancement of interfacial adhesion and dynamic mechanical properties of poly(methyl methacrylate)/multiwalled carbon nanotube composites with amine-terminated poly(ethylene oxide). Carbon, 44, 613 (2006). doi: 10.1016/j.carbon.2005.10.001.   DOI   ScienceOn
26 Kim KH, Jo WH. Improvement of tensile properties of poly(methyl methacrylate) by dispersing multi-walled carbon nanotubes functionalized with poly(3-hexylthiophene)-graft-poly(methyl methacrylate). Composites Sci Technol, 68, 2120 (2008). doi: 10.1016/j.compscitech.2008.03.008.   DOI   ScienceOn
27 Sabba Y, Thomas EL. High-concentration dispersion of singlewall carbon nanotubes. Macromolecules, 37, 4815 (2004). doi:10.1021/ma049706u.   DOI   ScienceOn
28 Bae DY, Lee HS. Enhanced compatibility of PC/PMMA alloys by adding multiwall carbon nanotubes. Carbon Lett, 11, 83 (2010).   DOI   ScienceOn
29 Velasco-Santos C, Martínez-Hernandez AL, Fisher FT, Ruoff R, Castano VM. Improvement of thermal and mechanical properties of carbon nanotube composites through chemical functionalization. Chem Mater, 15, 4470 (2003). doi: 10.1021/cm034243c.   DOI   ScienceOn
30 Park SJ, Cho MS, Lim ST, Choi HJ, Jhon MS. Synthesis and dispersion characteristics of multi-walled carbon nanotube composites with poly(methyl methacrylate) prepared by in-situ bulk polymerization. Macromol Rapid Commun, 24, 1070 (2003). doi: 10.1002/marc.200300089.   DOI   ScienceOn
31 Siochi EJ, Working DC, Park C, Lillehei PT, Rouse JH, Topping CC, Bhattacharyya AR, Kumar S. Melt processing of SWCNTpolyimide nanocomposite fibers. Compos, Part B: Eng, 35, 439 (2004). doi: 10.1016/j.compositesb.2003.09.007.   DOI   ScienceOn
32 Zhu BK, Xie SH, Xu ZK, Xu YY. Preparation and properties of the polyimide/multi-walled carbon nanotubes (MWNTs) nanocomposites. Composites Sci Technol, 66, 548 (2006). doi: 10.1016/j.compscitech.2005.05.038.   DOI   ScienceOn
33 Ogasawara T, Ishida Y, Ishikawa T, Yokota R. Characterization of multi-walled carbon nanotube/phenylethynyl terminated polyimide composites. Compos, Part A: Appl Sci Manuf, 35, 67 (2004). doi: 10.1016/j.compositesa.2003.09.003.   DOI   ScienceOn
34 Yu A, Hu H, Bekyarova E, Itkis ME, Gao J, Zhao B, Haddon RC. Incorporation of highly dispersed single-walled carbon nanotubes in a polyimide matrix. Composites Sci Technol, 66, 1190 (2006). doi: 10.1016/j.compscitech.2005.10.023.   DOI   ScienceOn
35 Liu T, Tong Y, Zhang WD. Preparation and characterization of carbon nanotube/polyetherimide nanocomposite films. Composites Sci Technol, 67, 406 (2007). doi: 10.1016/j.compscitech.2006.09.007.   DOI   ScienceOn
36 So HH, Cho JW, Sahoo NG. Effect of carbon nanotubes on mechanical and electrical properties of polyimide/carbon nanotubes nanocomposites. Eur Polym J, 43, 3750 (2007). doi: 10.1016/j.eurpolymj.2007.06.025.   DOI   ScienceOn
37 Yuen SM, Ma CCM, Lin YY, Kuan HC. Preparation, morphology and properties of acid and amine modified multiwalled carbon nanotube/polyimide composite. Composites Sci Technol, 67, 2564 (2007). doi: 10.1016/j.compscitech.2006.12.006.   DOI   ScienceOn
38 Seo DW, Yoon WJ, Park SJ, Jo MC, Kim JS. The preparation of multiwalled CNT-PMMA nanocomposite. Carbon Lett, 7, 266 (2006).
39 Jia Z, Wang Z, Xu C, Liang J, Wei B, Wu D, Zhu S. Study on poly(methyl methacrylate)/carbon nanotube composites. Mater Sci Eng, A, 271, 395 (1999). doi: 10.1016/s0921-5093(99)00263-4.   DOI
40 Tang W, Santare MH, Advani SG. Melt processing and mechanical property characterization of multi-walled carbon nanotube/high density polyethylene (MWNT/HDPE) composite films. Carbon, 41, 2779 (2003). doi: 10.1016/s0008-6223(03)00387-7.   DOI
41 Xiao KQ, Zhang LC, Zarudi I. Mechanical and rheological properties of carbon nanotube-reinforced polyethylene composites. Composites Sci Technol, 67, 177 (2007). doi: 10.1016/j.compscitech.2006.07.027.   DOI   ScienceOn
42 Tong X, Liu C, Cheng HM, Zhao H, Yang F, Zhang X. Surface modification of single-walled carbon nanotubes with polyethylene via in situ Ziegler–Natta polymerization. J Appl Polym Sci, 92, 3697 (2004). doi: 10.1002/app.20306.   DOI   ScienceOn
43 Gorrasi G, Sarno M, Di Bartolomeo A, Sannino D, Ciambelli P, Vittoria V. Incorporation of carbon nanotubes into polyethylene by high energy ball milling: Morphology and physical properties. J Polym Sci, Part B: Polym Phys, 45, 597 (2007). doi: 10.1002/polb.21070.   DOI   ScienceOn
44 Bin Y, Kitanaka M, Zhu D, Matsuo M. Development of highly oriented polyethylene filled with aligned carbon nanotubes by gelation/crystallization from solutions. Macromolecules, 36, 6213 (2003). doi: 10.1021/ma0301956.   DOI   ScienceOn
45 Wang Y, Cheng R, Liang L, Wang Y. Study on the preparation and characterization of ultra-high molecular weight polyethylene-carbon nanotubes composite fiber. Composites Sci Technol, 65, 793 (2005). doi: 10.1016/j.compscitech.2004.10.012   DOI   ScienceOn
46 Ruan SL, Gao P, Yang XG, Yu TX. Toughening high performance ultrahigh molecular weight polyethylene using multiwalled carbon nanotubes. Polymer, 44, 5643 (2003). doi: 10.1016/s0032-3861(03)00628-1.   DOI
47 Ruan S, Gao P, Yu TX. Ultra-strong gel-spun UHMWPE fibers reinforced using multiwalled carbon nanotubes. Polymer, 47, 1604 (2006). doi: 10.1016/j.polymer.2006.01.020.   DOI   ScienceOn
48 Chae HG, Minus ML, Kumar S. Oriented and exfoliated single wall carbon nanotubes in polyacrylonitrile. Polymer, 47, 3494 (2006). doi: 10.1016/j.polymer.2006.03.050   DOI   ScienceOn
49 Chae HG, Sreekumar TV, Uchida T, Kumar S. A comparison of reinforcement efficiency of various types of carbon nanotubes in polyacrylonitrile fiber. Polymer, 46, 10925 (2005). doi: 10.1016/j.polymer.2005.08.092.   DOI   ScienceOn
50 Hou H, Ge JJ, Zeng J, Li Q, Reneker DH, Greiner A, Cheng SZD. Electrospun polyacrylonitrile nanofibers containing a high concentration of well-aligned multiwall carbon nanotubes. Chem Mater, 17, 967 (2005). doi: 10.1021/cm0484955.   DOI   ScienceOn
51 Fornes TD, Baur JW, Sabba Y, Thomas EL. Morphology and properties of melt-spun polycarbonate fibers containing singleand multi-wall carbon nanotubes. Polymer, 47, 1704 (2006). doi:10.1016/j.polymer.2006.01.003.   DOI   ScienceOn
52 Singh S, Pei Y, Miller R, Sundararajan PR. Long-range, entangled carbon nanotube networks in polycarbonate. Adv Funct Mater, 13, 868 (2003). doi: 10.1002/adfm.200304411.   DOI   ScienceOn
53 Kim KH, Jo WH. A strategy for enhancement of mechanical and electrical properties of polycarbonate/multi-walled carbon nanotube composites. Carbon, 47, 1126 (2009). doi: 10.1016/j.carbon.2008.12.043.   DOI   ScienceOn
54 Zou Y, Feng Y, Wang L, Liu X. Processing and properties of MWNT/HDPE composites. Carbon, 42, 271 (2004). doi: 10.1016/j.carbon.2003.10.028.   DOI   ScienceOn
55 Kanagaraj S, Varanda FR, Zhil’tsova TV, Oliveira MSA, Simoes JAO. Mechanical properties of high density polyethylene/carbon nanotube composites. Composites Sci Technol, 67, 3071 (2007). doi: 10.1016/j.compscitech.2007.04.024.   DOI   ScienceOn
56 Gao J, Itkis ME, Yu A, Bekyarova E, Zhao B, Haddon RC. Continuous spinning of a single-walled carbon nanotube−nylon composite fiber. J Am Chem Soc, 127, 3847 (2005). doi: 10.1021/ja0446193   DOI   ScienceOn
57 Meincke O, Kaempfer D, Weickmann H, Friedrich C, Vathauer M, Warth H. Mechanical properties and electrical conductivity of carbon-nanotube filled polyamide-6 and its blends with acrylonitrile/butadiene/styrene. Polymer, 45, 739 (2004). doi: 10.1016/j.polymer.2003.12.013.   DOI   ScienceOn
58 Gao J, Zhao B, Itkis ME, Bekyarova E, Hu H, Kranak V, Yu A, Haddon RC. Chemical engineering of the single-walled carbon nanotube−nylon 6 interface. J Am Chem Soc, 128, 7492 (2006). doi: 10.1021/ja057484p.   DOI   ScienceOn
59 Xia H, Wang Q, Qiu G. Polymer-encapsulated carbon nanotubes prepared through ultrasonically initiated in situ emulsion polymerization. Chem Mater, 15, 3879 (2003). doi: 10.1021/cm0341890.   DOI   ScienceOn
60 Zhao C, Hu G, Justice R, Schaefer DW, Zhang S, Yang M, Han CC. Synthesis and characterization of multi-walled carbon nanotubes reinforced polyamide 6 via in situ polymerization. Polymer, 46, 5125 (2005). doi: 10.1016/j.polymer.2005.04.065.   DOI   ScienceOn
61 Shao W, Wang Q, Wang F, Chen Y. The cutting of multi-walled carbon nanotubes and their strong interfacial interaction with polyamide 6 in the solid state. Carbon, 44, 2708 (2006). doi: 10.1016/j.carbon.2006.04.006.   DOI   ScienceOn
62 Liu, Phang IY, Shen L, Chow SY, Zhang WD. Morphology and mechanical properties of multiwalled carbon nanotubes reinforced nylon-6 composites. Macromolecules, 37, 7214 (2004). doi: 10.1021/ma049132t.   DOI   ScienceOn
63 Gojny FH, Wichmann MHG, Fiedler B, Schulte K. Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites-a comparative study. Composites Sci Technol, 65, 2300 (2005). doi: 10.1016/j.compscitech.2005.04.021.   DOI   ScienceOn
64 Zhang WD, Shen L, Phang IY, Liu T. Carbon nanotubes reinforced nylon-6 composite prepared by simple melt-compounding. Macromolecules, 37, 256 (2003). doi: 10.1021/ma035594f.   DOI   ScienceOn
65 Bai JB, Allaoui A. Effect of the length and the aggregate size of MWNTs on the improvement efficiency of the mechanical and electrical properties of nanocomposites--experimental investigation. Compos, Part A: Appl Sci Manuf, 34, 689 (2003). doi: 10.1016/s1359-835x(03)00140-4.   DOI
66 Yang M, Gao Y, Li H, Adronov A. Functionalization of multiwalled carbon nanotubes with polyamide 6 by anionic ring-opening polymerization. Carbon, 45, 2327 (2007). doi: 10.1016/j.carbon.2007.07.021   DOI   ScienceOn
67 Gong X, Liu J, Baskaran S, Voise RD, Young JS. Surfactant-assisted processing of carbon nanotube/polymer composites. Chem Mater, 12, 1049 (2000). doi: 10.1021/cm9906396.   DOI   ScienceOn
68 Miyagawa H, Drzal LT. Thermo-physical and impact properties of epoxy nanocomposites reinforced by single-wall carbon nanotubes. Polymer, 45, 5163 (2004). doi: 10.1016/j.polymer.2004.05.036.   DOI   ScienceOn
69 Kim KS, Park SJ. Influence of surface treatment of multi-walled carbon nanotubes on interfacial interaction of nanocomposites. Carbon Lett, 11, 102 (2010).   DOI   ScienceOn
70 Jung HT, Cho Y, Kim T, Kim TA, Park M. Preparation of amineepoxy adducts(AEA)/thin multiwalled carbon nanotubes (TWCNTs) composite particles using dry processes. Carbon Lett, 11, 107 (2010).   DOI   ScienceOn
71 Sahoo NG, Rana S, Cho JW, Li L, Chan SH. Polymer nanocomposites based on functionalized carbon nanotubes. Prog Polym Sci, 35, 837 (2010). doi: 10.1016/j.progpolymsci.2010.03.002.   DOI   ScienceOn
72 Lee YS, Im JS, Yun SM, Nho YC, Kang PH, Jin H. X-ray photoelectron spectroscopic analysis of modified MWCNT and dynamic mechanical properties of e-beam cured epoxy resins with the MWCNT. Carbon Lett, 10, 314 (2009).   DOI   ScienceOn
73 im KS, Rhee KY, Lee KH, Byun JH, Park SJ. Rheological behaviors and mechanical properties of graphite nanoplate/carbon nanotube-filled epoxy nanocomposites. J Ind Eng Chem, 16, 572 (2010). doi: 10.1016/j.jiec.2010.03.017.   DOI   ScienceOn
74 Zhang X, Zhang J, Wang R, Liu Z. Cationic surfactant directed polyaniline/CNT nanocables: synthesis, characterization, and enhanced electrical properties. Carbon, 42, 1455 (2004). doi: 10.1016/j.carbon.2004.01.003.   DOI   ScienceOn
75 Spitalsky Z, Tasis D, Papagelis K, Galiotis C. Carbon nanotubepolymer composites: chemistry, processing, mechanical and electrical properties. Prog Polym Sci, 35, 357 (2010). doi: 10.1016/j.progpolymsci.2009.09.003.   DOI   ScienceOn
76 Kim KS, Park SJ. Influence of enhanced dispersity of chemically treated MWNTs on physical properties of MWNTs/PVDF films. Macromol Res, 18, 981 (2010).   DOI   ScienceOn
77 Guo P, Chen X, Gao X, Song H, Shen H. Fabrication and mechanical properties of well-dispersed multiwalled carbon nanotubes/epoxy composites. Composites Sci Technol, 67, 3331 (2007). doi: 10.1016/j.compscitech.2007.03.026.   DOI   ScienceOn
78 Liu L, Etika KC, Liao KS, Hess LA, Bergbreiter DE, Grunlan JC. Comparison of covalently and noncovalently functionalized carbon nanotubes in epoxy. Macromol Rapid Commun, 30, 627 (2009). doi: 10.1002/marc.200800778.   DOI   ScienceOn
79 Iijima S. Helical microtubules of graphitic carbon. Nature, 354, 56 (1991). doi: 10.1038/354056a0.   DOI
80 Spitalsky Z, Krontiras CA, Georga SN, Galiotis C. Effect of oxidation treatment of multiwalled carbon nanotubes on the mechanical and electrical properties of their epoxy composites. Compos, Part A: Appl Sci Manuf, 40, 778 (2009). doi: 10.1016/j.compositesa.2009.03.008.   DOI   ScienceOn
81 Ajayan PM, Stephan O, Colliex C, Trauth D. Aligned carbon nanotube arrays formed by cutting a polymer resin--nanotube composite. Science, 265, 1212 (1994). doi: 10.1126/science.265.5176.1212.   DOI   ScienceOn
82 Zhang J, Zou H, Qing Q, Yang Y, Li Q, Liu Z, Guo X, Du Z. Effect of chemical oxidation on the structure of single-walled carbon nanotubes. J Phys Chem B, 107, 3712 (2003). doi: 10.1021/jp027500u.   DOI   ScienceOn
83 Hong J, Park DW, Shim SE. A review on thermal conductivity of polymer composites using carbon-based fillers: carbon nanotubes and carbon fibers. Carbon Lett, 11, 347 (2010).   DOI   ScienceOn