Browse > Article
http://dx.doi.org/10.5714/CL.2013.14.2.076

Polymer matrices for carbon fiber-reinforced polymer composites  

Jin, Fan-Long (School of Chemical and Materials Engineering, Jilin Institute of Chemical Technology)
Lee, Seul-Yi (Department of Chemistry, Inha University)
Park, Soo-Jin (Department of Chemistry, Inha University)
Publication Information
Carbon letters / v.14, no.2, 2013 , pp. 76-88 More about this Journal
Abstract
Carbon fibers (CFs) have high service temperature, strength, and stiffness, and low weight. They are widely used as reinforcing materials in advanced polymer composites. The role of the polymer matrix in the composites is to provide bulk to the composite laminate and transfer load between the fibers. The interface between the CF and the resin matrix plays a critical role in controlling the overall properties of the composites. This paper aims to review the synthesis, properties, and applications of polymer matrices, such as thermosetting and thermoplastic resins.
Keywords
carbon fibers; polymer matrix; thermosetting resins; thermoplastic resins; composites;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Miloshev S, Novakov P, Dimitrov V, Gitsov I. Synthesis of novolac resins: 2. Influence of the reaction medium on the properties of the novolac oligomers. Polymer, 32, 3067 (1991). http://dx.doi. org/10.1016/0032-3861(91)90211-Z.   DOI   ScienceOn
2 Park SJ, Seo MK, Lee JR. Isothermal cure kinetics of epoxy/ phenol-novolac resin blend system initiated by cationic latent thermal catalyst. J Polym Sci A, 38, 2945 (2000). http:// dx.doi.org/10.1002/1099-0518(20000815)38:16<2945::AIDPOLA120>3.0.CO;2-6.   DOI
3 Guo B, Jia D, Fu W, Qiu Q. Hygrothermal stability of dicyanatenovolac epoxy resin blends. Polym Degrad Stab, 79, 521 (2003). http://dx.doi.org/10.1016/S0141-3910(02)00368-3.   DOI   ScienceOn
4 Xu HJ, Jin FL, Park SJ. Synthesis of a novel phosphorus-containing flame retardant for epoxy resins. Bull Korean Chem Soc, 30, 2643 (2009). http://dx.doi.org/10.5012/bkcs.2009.30.11.2643.   과학기술학회마을   DOI   ScienceOn
5 Park SJ, Jin FL. Thermal stabilities and dynamic mechanical properties of sulfone-containing epoxy resin cured with anhydride. Polym Degrad Stab, 86, 515 (2004). http://dx.doi.org/10.1016/j.polymdegradstab.2004.06.003.   DOI   ScienceOn
6 Park SJ, Jin FL, Lee JR. Synthesis and thermal properties of epoxidized vegetable oil. Macromol Rapid Commun, 25, 724 (2004). http://dx.doi.org/10.1002/marc.200300191.   DOI   ScienceOn
7 Park SJ, Jin FL, Lee JR, Shin JS. Cationic polymerization and physicochemical properties of a biobased epoxy resin initiated by thermally latent catalysts. Eur Polym J, 41, 231 (2005). http:// dx.doi.org/10.1016/j.eurpolymj.2004.09.011.   DOI   ScienceOn
8 Park SJ, Jin FL, Shin JS. Physicochemical and mechanical interfacial properties of trifluorometryl groups containing epoxy resin cured with amine. Mater Sci Eng A, 390, 240 (2005). http://dx.doi. org/10.1016/j.msea.2004.08.022.   DOI   ScienceOn
9 Park SJ, Jin FL. Synthesis and characterization of UV-curable acrylic resins containing fluorine groups. Polym Int, 54, 705 (2005). http://dx.doi.org/10.1002/pi.1755.   DOI   ScienceOn
10 Park SJ, Jin FL, Nicolais L. Epoxy resins: fluorine systems. In: Nicolais L, Borzacchiello A, eds. Wiley encyclopedia of composites, John Wiley & Sons (2011). http://dx.doi.org/10.1002/9781118097298.weoc076.   DOI
11 Choi MH, Jeon BH, Chung IJ. The effect of coupling agent on electrical and mechanical properties of carbon fiber/phenolic resin composites. Polymer, 41, 3243 (2000). http://dx.doi.org/10.1016/S0032-3861(99)00532-7.   DOI   ScienceOn
12 Park SJ, Jang YS. Interfacial characteristics and fracture toughness of electrolytically Ni-plated carbon fiber-reinforced phenolic resin matrix composites. J Colloid Interf Sci, 237, 91 (2001). http:// dx.doi.org/10.1006/jcis.2001.7441.   DOI   ScienceOn
13 An H, Feng B, Su S. $CO_2$ capture capacities of activated carbon fibre-phenolic resin composites. Carbon, 47, 2396 (2009). http:// dx.doi.org/10.1016/j.carbon.2009.04.029.   DOI   ScienceOn
14 Fei J, Li HJ, Fu YW, Qi LH, Zhang YL. Effect of phenolic resin content on performance of carbon fiber reinforced paper-based friction material. Wear, 269, 534 (2010). http://dx.doi.org/10.1016/j.wear.2010.05.008.   DOI   ScienceOn
15 Hsiao KT, Gangireddy S. Investigation on the spring-in phenomenon of carbon nanofiber-glass fiber/polyester composites manufactured with vacuum assisted resin transfer molding. Composites A, 39, 834 (2008). http://dx.doi.org/10.1016/j.compositesa.2008.01.015.   DOI   ScienceOn
16 Cecen V, Sarikanat M, Seki Y, Govsa T, Yildiz H, Tavman IH. Polyester composites reinforced with noncrimp stitched carbon fabrics: Mechanical characterization of composites and investigation on the interaction between polyester and carbon fiber. J Appl Polym Sci, 102, 4554 (2006). http://dx.doi.org/10.1002/app.24983.   DOI   ScienceOn
17 Samyn P, Schoukens G. Thermochemical sliding interactions of short carbon fiber polyimide composites at high pv-conditions. Mater Chem Phys, 115, 185 (2009). http://dx.doi.org/10.1016/j.matchemphys.2008.11.029.   DOI   ScienceOn
18 Monti M, Natali M, Petrucci R, Kenny JM, Torre L. Carbon nanofibers for strain and impact damage sensing in glass fiber reinforced composites based on an unsaturated polyester resin. Polym Compos, 32, 766 (2011). http://dx.doi.org/10.1002/pc.21098.   DOI   ScienceOn
19 Vilcakova J, Saha P, Quadrat O. Electrical conductivity of carbon fibres/polyester resin composites in the percolation threshold region. Eur Polym J, 38, 2343 (2002). http://dx.doi.org/10.1016/S0014-3057(02)00145-3.   DOI   ScienceOn
20 Zhang XR, Pei XQ, Wang QH. Friction and wear studies of polyimide composites filled with short carbon fibers and graphite and micro $SiO_2$. Mater Design, 30, 4414 (2009). http://dx.doi. org/10.1016/j.matdes.2009.04.002.   DOI   ScienceOn
21 Mascia L, Zhang Z, Shaw SJ. Carbon fibre composites based on polyimide/silica ceramers: aspects of structure-properties relationship. Composites A, 27, 1211 (1996). http://dx.doi.org/10.1016/1359-835X(96)00082-6.   DOI   ScienceOn
22 Li J, Cheng XH. Friction and wear properties of surface-treated carbon fiber-reinforced thermoplastic polyimide composites under oil-lubricated condition. Mater Chem Phys, 108, 67 (2008). http://dx.doi.org/10.1016/j.matchemphys.2007.09.003.   DOI   ScienceOn
23 Broyles NS, Verghese KNE, Davis SV, Li H, Davis RM, Lesko JJ, Riffle JS. Fatigue performance of carbon fibre/vinyl ester composites: the effect of two dissimilar polymeric sizing agents. Polymer, 39, 3417 (1998). http://dx.doi.org/10.1016/S0032-3861(97)10078-7.   DOI   ScienceOn
24 Huang CY, Wu CC. The EMI shielding effectiveness of PC/ABS/ nickel-coated-carbon-fibre composites. Eur Polym J, 36, 2729 (2000). http://dx.doi.org/10.1016/S0014-3057(00)00039-2.   DOI   ScienceOn
25 Vautard F, Ozcan S, Meyer H. Properties of thermo-chemically surface treated carbon fibers and of their epoxy and vinyl ester composites. Composites A, 43, 1120 (2012). http://dx.doi. org/10.1016/j.compositesa.2012.02.018.   DOI   ScienceOn
26 Jin FL, Rhee KY, Park SJ. Surface treatment of montmorillonite on the thermal stabilities of bisphenol-A diglycidyl dimethacrylate nanocomposites. Mater Sci Eng A, 435-436, 429 (2006). http:// dx.doi.org/10.1016/j.msea.2006.07.071.   DOI   ScienceOn
27 Yamada K, Yamane H, Kumada K, Tanabe S, Kajiyama T. Plasmagraft polymerization of a monomer with double bonds onto the surface of carbon fiber and its adhesion to a vinyl ester resin. J Appl Polym Sci, 90, 2415 (2003). http://dx.doi.org/10.1002/app.12897.   DOI   ScienceOn
28 Li J, Cai CL. The carbon fiber surface treatment and addition of PA6 on tensile properties of ABS composites. Curr Appl Phys, 11, 50 (2011). http://dx.doi.org/10.1016/j.cap.2010.06.017.   DOI   ScienceOn
29 Wu SH, Wang FY, Ma CCM, Chang WC, Kuo CT, Kuan HC, Chen WJ. Mechanical, thermal and morphological properties of glass fiber and carbon fiber reinforced polyamide-6 and polyamide-6/ clay nanocomposites. Mater Lett, 49, 327 (2001). http://dx.doi. org/10.1016/S0167-577X(00)00394-3.   DOI
30 Botelho EC, Figiel L, Rezende MC, Lauke B. Mechanical behavior of carbon fiber reinforced polyamide composites. Compos Sci Technol, 63, 1843 (2003). http://dx.doi.org/10.1016/S0266-3538(03)00119-2.   DOI   ScienceOn
31 Feldman AY, Gonzalez MF, Wachtel E, Moret MP, Marom G. Transcrystallinity in aramid and carbon fiber reinforced nylon 66: determining the lamellar orientation by synchrotron X-ray micro diffraction. Polymer, 45, 7239 (2004). http://dx.doi.org/10.1016/j.polymer.2004.08.027.   DOI   ScienceOn
32 Park JM. Interfacial properties of two-carbon fiber reinforced polycarbonate composites using two-synthesized graft copolymers as coupling agents. J Colloid Interf Sci, 225, 384 (2000). http:// dx.doi.org/10.1006/jcis.2000.6733.   DOI   ScienceOn
33 Senthilvelan S, Gnanamoorthy R. Damping characteristics of unreinforced, glass and carbon fiber reinforced nylon 6/6 spur gears. Polym Test, 25, 56 (2006). http://dx.doi.org/10.1016/j.polymertesting.2005.09.005.   DOI   ScienceOn
34 Montes-Moran MA, Martinez-Alonso A, Tascon JMD, Paiva MC, Bernardo CA. Effects of plasma oxidation on the surface and interfacial properties of carbon fibres/polycarbonate composites. Carbon, 39, 1057 (2001). http://dx.doi.org/10.1016/S0008-6223(00)00220-7.   DOI   ScienceOn
35 Carneiro OS, Covas JA, Bernardo CA, Caldeira G, Hattum FWJV, Ting JM, Alig RL, Lake ML. Production and assessment of polycarbonate composites reinforced with vapour-grown carbon fibres. Compos Sci Technol, 58, 401 (1998). http://dx.doi.org/10.1016/S0266-3538(97)00138-3.   DOI   ScienceOn
36 Choi YK, Sugimoto K, Song SM, Endo M. Production and characterization of polycarbonate composite sheets reinforced with vapor grown carbon fiber. Composites A, 37, 1944 (2006). http://dx.doi.org/10.1016/j.compositesa.2005.12.026.   DOI   ScienceOn
37 Kurtz SM. Chapter 2-Synthesis and processing of PEEK for surgical implants. In: Kurtz SM, ed. PEEK Biomaterials Handbook, William Andrew Publishing, Oxford, 9 (2012). http://dx.doi. org/10.1016/B978-1-4377-4463-7.10002-8.   DOI
38 Ma CCM, Tai NH, Wu SH, Lin SH, Wu JF, Lin JM. Creep behavior of carbon-fiber-reinforced polyetheretherketone (PEEK) [${\pm}$45]4s laminated composites (I). Composites B, 28, 407 (1997). http:// dx.doi.org/10.1016/S1359-8368(96)00059-5.   DOI   ScienceOn
39 Gebhard A, Bayerl T, Schlarb AK, Friedrich K. Galvanic corrosion of polyacrylnitrile (PAN) and pitch based short carbon fibres in polyetheretherketone (PEEK) composites. Corros Sci, 51, 2524 (2009). http://dx.doi.org/10.1016/j.corsci.2009.05.051.   DOI   ScienceOn
40 Xie GY, Sui GX, Yang R. Effects of potassium titanate whiskers and carbon fibers on the wear behavior of polyetheretherketone composite under water lubricated condition. Compos Sci Technol, 71, 828 (2011). http://dx.doi.org/10.1016/j.compscitech.2011.01.019.   DOI   ScienceOn
41 Gebhard A, Bayerl T, Schlarb AK, Friedrich K. Increased wear of aqueous lubricated short carbon fiber reinforced polyetheretherketone (PEEK/SCF) composites due to galvanic fiber corrosion. Wear, 268, 871 (2010). http://dx.doi.org/10.1016/j.wear.2009.11.018.   DOI   ScienceOn
42 Wu GM, Schultz JM. Processing and properties of solution impregnated carbon fiber reinforced polyethersulfone composites. Polym Compos, 21, 223 (2000). http://dx.doi.org/10.1002/pc.10179.   DOI   ScienceOn
43 Hou M, Ye L, Lee HJ, Mai YW. Manufacture of a carbon-fabricreinforced polyetherimide (CF/PEI) composite material. Compos Sci Technol, 58, 181 (1998). http://dx.doi.org/10.1016/S0266-3538(97)00117-6.   DOI   ScienceOn
44 Kim KY, Ye L. Interlaminar fracture toughness of CF/PEI composites at elevated temperatures: roles of matrix toughness and fibre/ matrix adhesion. Composites A, 35, 477 (2004). http://dx.doi. org/10.1016/j.compositesa.2003.10.005.   DOI   ScienceOn
45 Xian G, Zhang Z. Sliding wear of polyetherimide matrix composites: I. Influence of short carbon fibre reinforcement. Wear, 258, 776 (2005). http://dx.doi.org/10.1016/j.wear.2004.09.054.   DOI   ScienceOn
46 Fernandez B, Arbelaiz A, Diaz E, Mondragon I. Influence of polyethersulfone modification of a tetrafunctional epoxy matrix on the fracture behavior of composite laminates based on woven carbon fibers. Polym Compos, 25, 480 (2004). http://dx.doi.org/10.1002/pc.20041.   DOI   ScienceOn
47 Zhang C, Yi XS, Yui H, Asai S, Sumita M. Selective location and double percolation of short carbon fiber filled polymer blends: high-density polyethylene/isotactic polypropylene. Mater Lett, 36, 186 (1998). http://dx.doi.org/10.1016/S0167-577X(98)00023-8.   DOI   ScienceOn
48 Peijs AAJM. de Kok JMM. Hybrid composites based on polyethylene and carbon fibers. Part 6: Tensile and fatigue behavior. Composites, 24, 19 (1993). http://dx.doi.org/10.1016/0010-4361(93)90260-F.   DOI   ScienceOn
49 Hertel D, Valette R, Munstedt H. Three-dimensional entrance flow of a low-density polyethylene (LDPE) and a linear low-density polyethylene (LLDPE) into a slit die. J Non-Newton Fluid Mech, 153, 82 (2008). http://dx.doi.org/10.1016/j.jnnfm.2007.11.010.   DOI   ScienceOn
50 Spencer MW, Cui L, Yoo Y, Paul DR. Morphology and properties of nanocomposites based on HDPE/HDPE-g-MA blends. Polymer, 51, 1056 (2010). http://dx.doi.org/10.1016/j.polymer.2009.12.047.   DOI   ScienceOn
51 Jiang Z, Gyurova LA, Schlarb AK, Friedrich K, Zhang Z. Study on friction and wear behavior of polyphenylene sulfide composites reinforced by short carbon fibers and sub-micro $TiO_2$ particles. Compos Sci Technol, 68, 734 (2008). http://dx.doi.org/10.1016/j.compscitech.2007.09.022.   DOI   ScienceOn
52 Xu H, Feng Z, Chen J, Zhou H. Tribological behavior of the carbon fiber reinforced polyphenylene sulfide (PPS) composite coating under dry sliding and water lubrication. Mater Sci Eng A, 416, 66 (2006). http://dx.doi.org/10.1016/j.msea.2005.09.094.   DOI   ScienceOn
53 Karsli NG, Aytac A, Akbulut M, Deniz V, Guven O. Effects of irradiated polypropylene compatibilizer on the properties of short carbon fiber reinforced polypropylene composites. Radiat Phys Chem, 84, 74 (2013). http://dx.doi.org/10.1016/j.radphyschem.2012.06.041.   DOI   ScienceOn
54 Rezaei F, Yunus R, Ibrahim NA. Effect of fiber length on thermomechanical properties of short carbon fiber reinforced polypropylene composites. Mater Design, 30, 260 (2009). http://dx.doi. org/10.1016/j.matdes.2008.05.005.   DOI   ScienceOn
55 Dutra RCL, Soares BG, Campos EA, Silva JLG. Hybrid composites based on polypropylene and carbon fiber and epoxy matrix. Polymer, 41, 3841 (2000). http://dx.doi.org/10.1016/S0032-3861(99)00552-2.   DOI   ScienceOn
56 Karsli NG, Aytac A. Effects of maleated polypropylene on the morphology, thermal and mechanical properties of short carbon fiber reinforced polypropylene composites. Mater Design, 32, 4069 (2011). http://dx.doi.org/10.1016/j.matdes.2011.03.021.   DOI   ScienceOn
57 Taketa I, Ustarroz J, Gorbatikh L, Lomov SV, Verpoest I. Interply hybrid composites with carbon fiber reinforced polypropylene and self-reinforced polypropylene. Composites A, 41, 927 (2010). http://dx.doi.org/10.1016/j.compositesa.2010.02.003.   DOI   ScienceOn
58 Fu SY, Lauke B, Mader E, Hu X, Yue CY. Fracture resistance of short-glass-fiber-reinforced and short-carbon-fiber-reinforced polypropylene under Charpy impact load and its dependence on processing. J Mater Process Technol, 89-90, 501 (1999). http:// dx.doi.org/10.1016/S0924-0136(99)00065-5.   DOI   ScienceOn
59 Li J. The research on the interfacial compatibility of polypropylene composite filled with surface treated carbon fiber. Appl Surf Sci, 255, 8682 (2009). http://dx.doi.org/10.1016/j.apsusc.2009.06.053.   DOI   ScienceOn
60 Barton JM, Hamerton I, Jones JR, Stedman JC. Mechanical properties of tough, high temperature carbon fibre composites from novel functionalized aryl cyanate ester polymers. Polymer, 37, 4519 (1996). http://dx.doi.org/10.1016/0032-3861(96)00053-5.   DOI   ScienceOn
61 Marieta C, Schulz E, Mondragon I. Characterization of interfacial behaviour in carbon-fibre/cyanate composites.Compos Sci Technol, 62, 299 (2002). http://dx.doi.org/10.1016/S0266-3538(01)00215-9.   DOI   ScienceOn
62 Ren P, Liang G, Zhang Z. Influence of epoxy sizing of carbon-fiber on the properties of carbon fiber/cyanate ester composites.Polym Compos, 27, 591 (2006). http://dx.doi.org/10.1002/pc.20230.   DOI   ScienceOn
63 Chung K, Seferis JC. Evaluation of thermal degradation on carbon fiber/cyanate ester composites. Polym Degrad Stab, 71, 425 (2001). http://dx.doi.org/10.1016/S0141-3910(00)00194-4.   DOI   ScienceOn
64 Thunga M, Lio WY, Akinc M, Kessler R. Adhesive repair of bismaleimide/ carbon fiber composites with bisphenol E cyanate ester. Compos Sci Technol, 71, 239 (2011). http://dx.doi.org/10.1016/j.compscitech.2010.11.021.   DOI   ScienceOn
65 Jin FL, Ma CJ, Park SJ. Thermal and mechanical interfacial properties of epoxy composites based on functionalized carbon nanotubes. Mater Sci Eng A, 528, 8517 (2011). http://dx.doi. org/10.1016/j.msea.2011.08.054.   DOI   ScienceOn
66 Zhu L, Jin FL, Park SJ. Thermal stability and fracture toughness of epoxy resins modified with epoxidized castor oil and $Al_2O_3 $ nanoparticles. Bull Korean Chem Soc, 33, 2513 (2012). http:// dx.doi.org/10.5012/bkcs.2012.33.8.2513.   과학기술학회마을   DOI   ScienceOn
67 Kwak GH, Park SJ, Lee JR. Thermal stability and mechanical behavior of cycloaliphatic-DGEBA epoxy blend system initiated by cationic latent catalyst. J Appl Polym Sci, 78, 290 (2000). http://dx.doi.org/10.1002/1097-4628(20001010)78:2<290::AIDAPP80>3.0.CO;2-9.   DOI
68 Park SJ, Kim MH, Lee JR, Choi S. Effect of fiber-polymer interactions on fracture toughness behavior of carbon fiber-reinforced epoxy matrix composites. J Colloid Interf Sci, 228, 287 (2000). http://dx.doi.org/10.1006/jcis.2000.6953.   DOI   ScienceOn
69 Yoo MJ, Kim SH, Park SD, Lee WS, Sun JW, Choi JH, Nahm S. Investigation of curing kinetics of various cycloaliphatic epoxy resins using dynamic thermal analysis. Eur Polym J, 46, 1158 (2010). http://dx.doi.org/10.1016/j.eurpolymj.2010.02.001.   DOI   ScienceOn
70 Park SJ, Kim TJ, Lee JR. Cure behavior of diglycidylether of bisphenol A/trimethylolpropane triglycidylether epoxy blends initiated by thermal latent catalyst. J Polym Sci B, 38, 2114 (2000). http:// dx.doi.org/10.1002/1099-0488(20000815)38:16<2114::AIDPOLB50>3.0.CO;2-8.   DOI
71 Park SJ, Jin FL, Lee JR. Thermal and mechanical properties of tetrafunctional epoxy resin toughened with epoxidized soybean oil. Mater Sci Eng A, 374, 109 (2004). http://dx.doi.org/10.1016/j.msea.2004.01.002.   DOI   ScienceOn
72 Lee MC, Ho TH, Wang CS. Synthesis of tetrafunctional epoxy resins and their modification with polydimethylsiloxane for electronic application. J Appl Polym Sci, 62, 217 (1996). http:// dx.doi.org/10.1002/(SICI)1097-4628(19961003)62:1<217::AIDAPP25>3.0.CO;2-0.   DOI
73 Chen W, Yu Y, Li P, Wang C, Zhou T, Yang X. Effect of new epoxy matrix for T800 carbon fiber/epoxy filament wound composites. Compos Sci Technol, 67, 2261 (2007). http://dx.doi.org/10.1016/j.compscitech.2007.01.026.   DOI   ScienceOn