• Title/Summary/Keyword: Polymer wall

Search Result 254, Processing Time 0.03 seconds

Paeonia lactiflora Inhibits Cell Wall Synthesis and Triggers Membrane Depolarization in Candida albicans

  • Lee, Heung-Shick;Kim, Younhee
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.2
    • /
    • pp.395-404
    • /
    • 2017
  • Fungal cell walls and cell membranes are the main targets of antifungals. In this study, we report on the antifungal activity of an ethanol extract from Paeonia lactiflora against Candida albicans, showing that the antifungal activity is associated with the synergistic actions of preventing cell wall synthesis, enabling membrane depolarization, and compromising permeability. First, it was shown that the ethanol extract from P. lactiflora was involved in damaging the integrity of cell walls in C. albicans. In isotonic media, cell bursts of C. albicans by the P. lactiflora ethanol extract could be restored, and the minimum inhibitory concentration (MIC) of the P. lactiflora ethanol extract against C. albicans cells increased 4-fold. In addition, synthesis of $(1,3)-{\beta}-{\small{D}}-glucan$ polymer was inhibited by 87% and 83% following treatment of C. albicans microsomes with the P. lactiflora ethanol extract at their $1{\times}MIC$ and $2{\times}MIC$, respectively. Second, the ethanol extract from P. lactiflora influenced the function of C. albicans cell membranes. C. albicans cells treated with the P. lactiflora ethanol extract formed red aggregates by staining with a membrane-impermeable dye, propidium iodide. Membrane depolarization manifested as increased fluorescence intensity by staining P. lactiflora-treated C. albicans cells with a membrane-potential marker, $DiBAC_4(3)$ ((bis-1,3-dibutylbarbituric acid) trimethine oxonol). Membrane permeability was assessed by crystal violet assay, and C. albicans cells treated with the P. lactiflora ethanol extract exhibited significant uptake of crystal violet in a concentration-dependent manner. The findings suggest that P. lactiflora ethanol extract is a viable and effective candidate for the development of new antifungal agents to treat Candida-associated diseases.

Analysis of impact damage behavior of GFRP-strengthened RC wall structures subjected to multiple explosive loadings (복합 폭발하중을 받는 GFRP 보강 RC 벽체 구조물의 비선형 충격 손상거동 해석)

  • Noh, Myung-Hyun;Lee, Sang-Youl;Park, Tae-Hyo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.1033-1036
    • /
    • 2008
  • In this paper, the analysis of impact damage behavior of a reinforced concrete structure that undergoes both a shock impulsive loading and an impact loading due to the air blast induced from an explosion is performed. Firstly, a pair of multiple loadings are selected from the scenario that an imaginary explosion accident is assumed. The RC structures strengthened with glass fiber reinforced polymer (GFRP) composites are considered as a scheme for retrofitting RC wall structures subjected to multiple explosive loadings and then the evaluation of the resistant performance against them is presented in comparison with the result of the evaluation of a RC structure without a retrofit. Also, in order to derive the result of the analysis similar to that of real explosion experiments, which require the vast investment and expense for facilities, the constitutive equation and the equation of state (EOS) which can describe the real impact and shock phenomena accurately are included with them. In addition, the numerical simulations of two concrete structures are achieved using AUTODYN-3D, an explicit analysis program, in order to prove the retrofit performance of a GFRP-strengthened RC wall structure.

  • PDF

Room-temperature Bonding and Mechanical Characterization of Polymer Substrates using Microwave Heating of Carbon Nanotubes (CNT 마이크로파 가열을 이용한 고분자 기판의 상온 접합 및 기계적 특성평가)

  • Sohn, Minjeong;Kim, Min-Su;Ju, Byeong-Kwon;Lee, Tae-Ik
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.2
    • /
    • pp.89-94
    • /
    • 2021
  • The mechanical reliability of flexible devices has become a major concern on their commercialization, where the importance of reliable bonding is highlighted. In terms of component materials' properties, it is important to consider thermal damage of polymer substrates that occupy large area of the flexible device. Therefore, room temperature bonding process is highly advantageous for implementing flexible device assemblies with mechanical reliability. Conventional epoxy resins for the bonding still require curing at high temperatures. Even after the curing procedure, the bonding joint loses flexibility and exhibits poor fatigue durability. To solve this problems, low-temperature and adhesive-free bonding are required. In this work, we develop a room temperature bonding process for polymer substrates using carbon nanotube heated by microwave irradiations. After depositing multiple-wall carbon nanotubes (MWNTs) on PET polymer substrates, they are heated locally with by microwave while the entire bonding specimen maintains room temperature and the heating induces mechanical entanglement of CNT-PET. The room temperature bonding was conducted for a PET/CNT/PET specimen at 600 watt of microwave power for 10 seconds. Thickness of the CNT bonding joint was very thin that it obtains flexibility as well. In order to evaluate the mechanical reliability of the joint specimen, we performed lap shear test, three-point bending test, and dynamic bending test, and confirmed excellent joint strength, flexibility, and bending durability from each test.

An Experimental Study on the Water Repellent Property of Mortar Applied Water Repellent Agent of Inorganic Polymer Type (무기질 폴리머계 흡수방지재를 도포한 모르터의 발수성능 평가에 관한 실험적 연구)

  • 이일형;엄덕준;오상근
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2004.05a
    • /
    • pp.33-37
    • /
    • 2004
  • Recently, Growing tendency for structure surface to use water repellent agent has increased steadily. But investigation of it's protection and durability property is not sufficient. Therefore, this paper shows the investigation about repellent property and micro structure's change in surface layer of mortar that is applied by water repellent agent. Water repellent property, absorption coefficient, air permeability, porosity and observation of micro construct was investigated according to water repellent agent type. The test results indicated that mortar applied water repellent agent appears tiny absorption coefficient, but air permeability is maintained. The reason is because silane solution is coating at capillary surface of a wall and minute pore structure is changeless.

  • PDF

One-dimensional Nanomaterials for Field Effect Transistor (FET) Type Biosensor Applications

  • Lee, Min-Gun;Lucero, Antonio;Kim, Ji-Young
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.4
    • /
    • pp.165-170
    • /
    • 2012
  • One-dimensional, nanomaterial field effect transistors (FET) are promising sensors for bio-molecule detection applications. In this paper, we review fabrication and characteristics of 1-D nanomaterial FET type biosensors. Materials such as single wall carbon nanotubes, Si nanowires, metal oxide nanowires and nanotubes, and conducting polymer nanowires have been widely investigated for biosensors, because of their high sensitivity to bio-substances, with some capable of detecting a single biomolecule. In particular, we focus on three important aspects of biosensors: alignment of nanomaterials for biosensors, surface modification of the nanostructures, and electrical detection mechanism of the 1-D nanomaterial sensors.

Effect of The Bending Strain of FRP Tube for Composite Bushing with Winding Tension (와인딩 장력이 composite 부싱용 FRP tube의 굽힘변형에 미치는 영향)

  • Cho, Han-Goo;Yoo, Dae-Hoon;Kang, Hyung-Kyung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.380-381
    • /
    • 2009
  • This paper describes effect of the bending strain of FRP tube for composite bushing with winding tension. The composite bushing can be formed, by adding silicone rubber sheds to a tube of composite materials. The FRP tube is internal insulating part of a composite bushing and is designed to ensure the mechanical characteristics. Generally the properties of FRP tube can be influenced by the winding angle, wall thickness and winding tension. As winding tension is increased glass contents was increased in the range of 70.4~76.6%. In the bending test, winding tension is increased residual displacement was decreased in the range of 14.0~12.2 mm.

  • PDF

A Study on the Gas Leakage and Friction of the Self-lubricating Piston Seal Rings (자체 윤활 피스톤 씨일 링의 가스 누출과 마찰에 대한 연구)

  • 심현해;권오관;이규한;김병환;임윤철
    • Tribology and Lubricants
    • /
    • v.12 no.4
    • /
    • pp.7-12
    • /
    • 1996
  • Present study was undertaken to investigate the leakage and friction of self-lubricating piston seal rings. A crank-piston type gas leakage test set-up was constructed. The piston rings were made of PTFE-polyimide composite. The free gap configurations of the seal rings were butt and step types. Eccentric tension rings were used to give the seal rings prepressure between the seal rings and cylinder wall. Two sizes of the tension rings were installed to investigate their effect on the gas leakage and friction of the seal rings. The results showed that step type seal rings are superior than the butt types. High tension spring rings resulted in low leakage and high friction loss. In order to reduce the gas leakage and friction loss of the piston seal rings, there should be compromise between the number of ring stages and prepressure of the tension rings.

Fabrication of Substrate Integrated Waveguide (SIW)-based Shielded Stripline using Silicon Anisotropic Wet-Etch and BCB-based Polymer Bonding (실리콘 이방성 습식 식각과 BCB 폴리머 접합을 이용한 기판 집적형 도파관(SIW) 기반의 차폐된 스트립선로의 제작)

  • Bang, Yong-Seung;Kim, Nam-Gon;Kim, Jung-Mu;Cheon, Chan-Gyul;Kwon, Young-Woo;Kim, Yong-Kweon
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1513_1514
    • /
    • 2009
  • This paper reports on a fabrication of novel substrate integrated waveguide (SIW)-based shielded stripline applicable to the broadband transverse electromagnetic (TEM) single-mode propagation. We suggested a structure for half-SIW and half-shielded stripline, which combined through the benzocyclobutene (BCB) bonding layer. The electrical interconnection between the sidewall of anisotropic wet-etched silicon and patterned BCB layers is measured subsequent to the metalization on the side wall. The proposed SIW-based shielded stripline has great potential in terms of simple fabrication, integration with planar circuits and monolithic system fabricated on a SIW structure.

  • PDF

Fabrication of Carbon Nanotube Strain Sensors (카본나노튜브 스트레인 센서 제작 기술)

  • Chang, Won-Seok;Song, Sun-Ah;Kim, Jae-Hyun;Han, Chang-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.10
    • /
    • pp.773-777
    • /
    • 2009
  • In this study, the strain sensing characteristics of single-wall carbon nanotubes(SWCNTs) networks were investigated to develop a film sensor for strain sensing. The SWCNTs film are formed on flexible substrates of poly(ethylene terephthalate) (PET) using spray process. In this manner we could control the transparency and obtain excellent uniformity of the networked SWCNT film. The carbon nanotube film is isotropic due to randomly oriented bundles of SWCNTs. Using experimental results it is shown that there is a nearly linear change in resistance across the film when it is subjected to tensile stress. The results presented in this study indicate the potential of such films for high sensitive transparent strain sensors on macro scale.

A study of estimation of filling phase condition in injection molding process (사출성형의 충전조건 선정에 관한 연구)

  • Jo, Y.M.;Kwon, O.J.;Kim, J.D.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.3
    • /
    • pp.110-118
    • /
    • 1995
  • The filling phase analysis of the injection molding process for thermoplastics was applied to predict pressure, themperature and shear stress in the test mold, and the results were compared with the experiment using 30% glass fiber added ABS resin. The finite difference method was used in the analysis considering the effects of heat transfer between molten polymer and mold wall, and also frictional heating by shear flow. The analysis results were considered as a method to improve the quality and the productivity of injection molding process. Using the analysis results, the molding factors such as mold-ability of polymers, performance of injection molding machine, positioning of gate and dimendsioning of runner in the injection molding process can be estimated at the design stage of mold for good quality and productivity.

  • PDF