• Title/Summary/Keyword: Polymer wall

Search Result 256, Processing Time 0.026 seconds

Rapid Prototyping of Polymer Microfluidic Devices Using CAD/CAM Tools for Laser Micromachining

  • Iovenitti, Pio G.;Mutapcic, Emir;Hume, Richard;Hayes, Jason P.
    • International Journal of CAD/CAM
    • /
    • v.6 no.1
    • /
    • pp.183-192
    • /
    • 2006
  • A CAD/CAM system has been developed for rapid prototyping (RP) of microfluidic devices based on excimer laser micromachining. The system comprises of two complementary softwares. One, the CAM tool, creates part programs from CAD models. The other, the Simulator Tool, uses a part program to generate the laser tool path and the 2D and 3D graphical representation of the machined microstructure. The CAM tool's algorithms use the 3D geometry of a microstructure, defined as an STL file exported from a CAD system, and process parameters (laser fluence, pulse repetition frequency, number of shots per area, wall angle), to automatically generate Numerical Control (NC) part programs for the machine controller. The performance of the system has been verified and demonstrated by machining a particle transportation device. The CAM tool simplifies part programming and replaces the tedious trial-and-error approach to creating programs. The simulator tool accepts manual or computer generated part programs, and displays the tool path and the machined structure. This enables error checking and editing of the program before machining, and development of programs for complex microstructures. Combined, the tools provide a user-friendly CAD/CAM system environment for rapid prototyping of microfluidic devices.

The Effect of MgO Content on the Preparation of Porous Hydroxyapaite Scaffolds by Polymer Sponge Method (폴리머 스펀지법을 이용한 다공성 수산화아파타이트 지지체 제조 시 MgO 첨가량에 따른 영향)

  • Jin, Hyeong-Ho;Min, Sang-Ho;Lee, Won-Ki;Park, Hong-Chae;Yoon, Seog-Young
    • Korean Journal of Materials Research
    • /
    • v.16 no.11
    • /
    • pp.715-718
    • /
    • 2006
  • Porous hydroxyapatite (HAp) scaffolds have been prepared by using the slurry including HAp and magnesia based on the replication of polymer sponge substrate. The influence of MgO content in slurry on the pore morphology and size, density, porosity, and mechanical strength of porous HAp scaffolds was investigated. The obtained scaffolds with average pore sizes ranging 150 to 300 mm had open, relatively uniform, and interconnected porous structure regardless of MgO content. As the MgO content increased, the pore network frame of scaffolds became to be relatively stronger, even though the pore size was not much changed. The compressive strength of the scaffolds increased rapidly with the increase of MgO content because of increasing the pore wall thickness and density of the scaffolds. As a result, the porosity, density, and compressive strength of the porous HAp scaffolds prepared by the sponge method were significantly affected by the addition of MgO.

Development of Film Fixing System for Improving Overlap Defects in the Film Insert Injection Molding Process (필름 인서트 사출성형 공정의 오버랩 불량 개선을 위한 필름 고정 시스템 개발)

  • Kim, Jung-Ho;Mun, Ji-Hun;Park, Hong-Seok
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.3
    • /
    • pp.472-479
    • /
    • 2013
  • We carried out research into an environmentally friendly injection molding process that involves filling the mold with polymer after thin films are fixed into the cavity, without the coating, plating process. Film insert injection molding is a new technique in which molten plastic resin is injected into the cavity after films are precisely attached to the side of the mold wall. In the film insert injection molding process, the insert film is moved by the flow of the molten plastic resin. Overlap defects cause a decline in the productivity and the quality of the manufactured goods. To reduce overlap defects, new injection mold parts are proposed to produce automotive exterior parts using thin films. It is suggested that the best possible method would be to fix the thin films to one side of the mold wall, and develop interior pins to fix the films in the mold. Based on this new pin fixing system, the problem of the film being moved by the flow of the molten resin was improved.

Computational material modeling of masonry walls strengthened with fiber reinforced polymers

  • Koksal, H. Orhun;Jafarov, Oktay;Doran, Bilge;Aktan, Selen;Karakoc, Cengiz
    • Structural Engineering and Mechanics
    • /
    • v.48 no.5
    • /
    • pp.737-755
    • /
    • 2013
  • This paper aims to develop a practical approach to modeling of fiber reinforced polymers (FRP) strengthened masonry panels. The main objective is to provide suitable relations for the material characterization of the masonry constituents so that the finite element applications of elasto-plastic theory achieves a close fit to the experimental load-displacement diagrams of the walls subjected to in-plane shear and compression. Two relations proposed for masonry columns confined with FRP are adjusted for the cohesion and the internal friction angle of both units and mortar. Relating the mechanical parameters to the uniaxial compression strength and the hydrostatic pressure acting over the wall surface, the effects of major and intermediate principal stresses ${\sigma}_1$ and ${\sigma}_2$ on the yielding and the shape of the deviatoric section are then reflected into the analyses. Performing nonlinear finite element analyses (NLFEA) for the three walls tested in two different studies, their stress-strain response and failure modes are eventually evaluated through the comparisons with the experimental behavior.

Reactive ion Etching Characteristics of 3C-SiC Grown on Si(100) Wafers (Si(100) 기판위에 성장된 3C-SiC의 RIE 특성)

  • Jung, Soo-Yong;Woo, Hyung-Soon;Jin, Dong-Woo;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.892-895
    • /
    • 2003
  • This paper describes on RIE(Reactive Ion Etching) characteristics of 3C-SiC(Silicon Carbide) grown on Si(100) wafers. During RIE of 3C-SiC films in this work, $CHF_3$ gas is used to form of polymer as a side wall for excellent anisotropy etching. From this process, etch rates are obtained a $60{\sim}980{\AA}/min$ by various conditions such as $CHF_3$ gas flux, $O_2$ addition ratio, RF power and electrode distance. Also, approximately $40^{\circ}$ mesa structures are successfully formed at 100 mTorr $CHF_3$ gas flow ratio, 200 W RF power and 30 mm electrode distance. Moreover, vertical side wall is fabricated by anisotropy etching with 50% $O_2$ addition ratio and 25 mm electrode distance. Therefore, RIE of 3C-SiC films using $CHF_3$ could be applicable as fabrication process technology for high-temperature 3C-SiC MEMS applications.

  • PDF

Development of a New Process for Welding a WC Layer to the Round Surface of a Plain Carbon Steel (초경접합 신공법 개발)

  • 박우진;김기열;이범주;조정환;박채규
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.257-262
    • /
    • 1999
  • The economic loss arisen from the abrasion wear have been increasing at every industrial field. To reduce the economic loss we developed a new process, which is named MAHa process(Metallic Adhesives for HArdening). MAHa process is a process to weld tungsten carbide(WC) to the surface of a plain carbon steel so that it may stay longer under the severe abrasive environment. The depth of the WC layer ranges from 0.5 mm to 5 m. Compared with the conventional technology, arc-augmented welding which bonds WC on the flat surface only, MAHa process has the merits that it can make a robust WC layer on the round or wave- shaped surface also. How to turn the WC powder into a flexible mat is the key technology of the MAHa process. We invented new polymer materials to accomplish such a goal and both the MAHa process and the invented materials were applied for patents. For the application, the inner wall of elbow of Concrete Pump Truck(CPT) was maharized(MAHa process-treated) and the new WC layer on the inner wall was made successfully. The elbow was equipped to a CPT.

  • PDF

Behavior of FRP-reinforced steel plate shear walls with various reinforcement designs

  • Seddighi, Mehdi;Barkhordari, Mohammad A.;Hosseinzadeh, S.A.A.
    • Steel and Composite Structures
    • /
    • v.33 no.5
    • /
    • pp.729-746
    • /
    • 2019
  • The nonlinear behavior of single- and multi-story steel plate shear walls (SPSWs) strengthened with three different patterns of fiber reinforced polymer (FRP) laminates (including single-strip, multi-strip and fully FRP-strengthened models) is studied using the finite element analysis. In the research, the effects of orientation, width, thickness and type (glass or carbon) of FRP sheets as well as the system aspect ratio and height are investigated. Results show that, despite an increase in the system strength using FRP sheets, ductility of reinforced SPSWs is decreased due to the delay in the initiation of yielding in the infill wall, while their initial stiffness does not change significantly. The content/type/reinforcement pattern of FRPs does affect the nonlinear behavior characteristics and also the mode and pattern of failure. In the case of multi-strip and fully FRP-strengthened models, the use of FPR sheets almost along the direction of the infill wall tension fields can maximize the effectiveness of reinforcement. In the case of single-strip pattern, the effectiveness of reinforcement is decreased for larger aspect ratios. Moreover, a relatively simplified and approximate theoretical procedure for estimating the strength of SPSWs reinforced with different patterns of FRP laminates is presented and compared with the analytical results.

Microencapsulation of Isoprinosine with Ethylcellulose

  • Kim, Chong-Kook;Hwang, Sung-Joo
    • Archives of Pharmacal Research
    • /
    • v.14 no.4
    • /
    • pp.298-304
    • /
    • 1991
  • Isoprinosine, an antiviral agent with a bitter taste, has been clinically used up to a maximum of 4 g daily in 4-8 doses. In this investigation, isoprinosine was microencapsulated with ethylcellulose 22 cps, 50 cps and 100 cps by means of polymer deposition from cyclohexane through temperature change. Complete removal of cyclohexane from the microcapsules was necessary, since ethylcellulose-coated microcapsules obtained from cyclohexane medium were heavily solvated with cyclohexane and formed lumps even after drying. The displacement of cyclohexane by n-hexane during isolation of microcapsules (Method III) or the freezing of the anal-washed microcapsules before drying (Mothod II) provided the dried products which were more discrete microcapsules than those which were simply dried in the air overnight (Method I). Method III was especially the most effective procedure in preparing finer and more discrete microcapsules. The drug-release from microcapsules was influenced by the ratio of core to wall, the viscosity grade of ethylcellulose and the overall microcapsule size. The release rate was adequately fitted to both the first-order and the diffusion-controlled processes. It is therefore possible to design the release-controlled microcapsules with ethylcellulose of different viscosity along with various core to wall ratio.

  • PDF

Buckling conditions and strengthening by CFRP composite of cylindrical steel water tanks under seismic load

  • Ali Ihsan Celik;Mehmet Metin Kose;Ahmet Celal Apay
    • Earthquakes and Structures
    • /
    • v.27 no.2
    • /
    • pp.97-111
    • /
    • 2024
  • In this paper, buckling conditions and retrofitting of cylindrical steel water storage tanks with different roof types and wall thicknesses were investigated by using finite element method. Four roof types of cylindrical steel tanks which are open-top, flat-closed, conical-closed and torispherical-closed and three wall thicknesses of 4, 6 and 8 mm were considered in FE modeling of cylindrical steel tanks. The roof shapes significantly affect load distribution on the tank shell under the seismic action. Composite FRP materials are widely used for winding thin-walled cylindrical steel structures. The retrofitting efficiency of cylindrical steel water tank is tested under the seismic loading with the externally bonded CFRP laminates. In retrofitting of cylindrical steel tank, the CFRP composite material coating method was used to improve of seismic performance of cylindrical steel tanks. ANSYS software was used to analyze the cylindrical steel tanks and maximum equivalent (von-Mises) and directional deformation were obtained. Equivalent (von-Mises) stresses significantly decreased due to the coating of the tank shell with FRP composite material. In thin-walled steel structures, excessive stress causes buckling and deformations. Therefore, retrofitting led to decrease in stress, reductions in directional and buckling deformation of the open-top, flat-closed, conical-closed and torispherical-closed tanks.

Antibiofilm Activity of Scutellaria baicalensis through the Inhibition of Synthesis of the Cell Wall (1, 3)-${\beta}$-D-Glucan Polymer (세포벽 (1,3)-${\beta}$-D-Glucan Polymer 합성의 저해로 인한 황금(Scutellaria baicalensis)의 항바이오필름 활성)

  • Kim, Younhee
    • Microbiology and Biotechnology Letters
    • /
    • v.41 no.1
    • /
    • pp.88-95
    • /
    • 2013
  • Candida biofilms are self-organized microbial communities growing on the surfaces of host tissues and medical devices. These biofilms have been displaying increasing resistance against conventional antifungal agents. The roots of Scutellaria baicalensis have been widely used for medicinal purpose throughout East Asia. The aim of the present study was to evaluate the effect of S. baicalensis aqueous extract upon the preformed biofilms of 10 clinical C. albicans isolates, and assess the mechanism of the antibiofilm activity. Its effect on preformed biofilm was judged using an XTT reduction assay and the metabolic activity of all tested strains were reduced ($57.7{\pm}17.3$%) at MIC values. The S. baicalenis extract inhibited (1, 3)-${\beta}$-D-glucan synthase activity. The effect of S. baicalensis on the morphology of C. albicans was related to the changes in growth caused by inhibiting glucan synthesis; most cells were round and swollen, and cell walls were densely stained or ruptured. The anticandidal activity was fungicidal, and the extract also arrested C. albicans cells at $G_0/G_1$. The data suggest that S. baicalensis has multiple fatal effects on target fungi, which ultimately result in cell wall disruption and killing by inhibiting (1, 3)-${\beta}$-D-glucan synthesis. Therefore, S. baicalensis holds great promise for use in treating and eliminating biofilm-associated Candida infections.