• Title/Summary/Keyword: Polymer support

Search Result 202, Processing Time 0.026 seconds

Effects of SIS Sponge and Bone Marrow-Derived Stem Cells on the Osteogenic Differentiation for Tissue Engineered Bone (SIS 스폰지와 골수유래줄기세포를 이용한 조직공학적 골분화 유도)

  • Park Ki Suk;Jin Chae Moon;Yun Sun Jung;Hong Keum Duck;Kim Soon Hee;Kim Moon Suk;Rhee John M.;Khang Gilson;Lee Hai Bang
    • Polymer(Korea)
    • /
    • v.29 no.5
    • /
    • pp.501-507
    • /
    • 2005
  • Small intestinal submucosa (SIS) had been widely used as a biomaterial without immune rejection responses. SIS sponges prepared by crosslinking with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC). SIS powders dissolved in $3\%(v/v)$ acetic acid aqueous solution for 48hrs and freeze-dried. EDC solution ($H_2O$ : ethanol = 5 : 95) as a crosslink agent was used in concentration of 100mM. In vitro, rat-BMSCs seeded in SIS sponges and induced the osteogenesis for 28 days. We have characterized the osteogenic potential of rat-BMSCs in SIS sponges by alkaline phosphatase activity(ALP), n assay, SEM and RT-PCR for osteogenic phenotype. In SEM, all morphology of SIS sponges was regular and showed interconnected pore structure. By RT-PCR analysis, we observed type I collagen expression. These results demonstrate osteogenic differentiation of rat-BMSCs. In conclusion, we confirmed that the morphology of surface, cross-section, and side of SIS sponges were highly porous with good interconnections between each pores, which can support the surface of cell growth, proliferation, and differentiation. This result indicates that SIS sponge is useful for osteogenesis of BMSCs.

TREATMENT OF PHENOL CONTAINED IN WASTE WATER USING THE HETEROGENIZED FENTON SYSTEM

  • Kim, Seong-Bo
    • Environmental Engineering Research
    • /
    • v.12 no.1
    • /
    • pp.30-35
    • /
    • 2007
  • Fenton system using homogeneous iron catalyst is very powerful in the degradation of organic compounds, but has a disadvantage to remove Fe ions from water after wastewater treatment. Thus, iron catalyst was bounded to support such as inorganic and polymer materials. The PVP supporting iron catalyst showed a good catalytic performance in degradation of phenol contained in waste water and iron catalyst supported on ${SO_4}^{2-}$ type PVP (KEX 511) showed the best catalytic performance. Also, reaction kinetic study was carried out in this system. Reaction constants on various catalysts was obtained from the pseudo first order equation. Reaction rate constants with the heterogenized $FeCl_2/PVP$ catalyst is a three-fold smaller than that of $FeCl_2$ catalyst.

An atomistic model for hierarchical nanostructured porous carbons in molecular dynamics simulations

  • Chae, Kisung;Huang, Liping
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.403.2-403.2
    • /
    • 2016
  • Porous materials play a significant role in energy storage and conversion applications such as catalyst support for polymer electrolyte membrane fuel cell. In particular, hierarchical porous materials with both micropores (poresize, ${\delta}$ < 2 nm) and regularly arranged mesopores (2 nm < ${\delta}$ < 50 nm) are known to greatly enhance the efficiency of catalytic reactions by providing enormous surface area as well as fast mass transport channels for both reactants and products from/to active sites. Although it is generally agreed that the microscopic structure of the porous materials directly affects the performance of these catalytic reactions, neither detailed mechanisms nor fundamental understanding are available at hand. In this study, we propose an atomistic model of hierarchical nanostructured porous carbons (HNPCs) in molecular dynamics simulations. By performing a systematic study, we found that structural features of the HNPC can be independently altered by tuning specific synthesis parameters, while remaining other structures unchanged. In addition, we show some structure-property relations including mechanical and gas transport properties.

  • PDF

Synthesis and electrochemical analysis of Pt-loaded, polypyrrole-decorated, graphene-composite electrodes

  • Park, Jiyoung;Kim, Seok
    • Carbon letters
    • /
    • v.14 no.2
    • /
    • pp.117-120
    • /
    • 2013
  • In this study, an electro-catalyst of Pt nanoparticles supported by polypyrrole-functionalized graphene (Pt/PPy-reduced graphene oxide [RGO]) is reported. The Pt nanoparticles are deposited on the PPy-RGO composite by chemical reduction of H2PtCl6 using NaBH4. The presence of graphene (RGO) caused higher activity. This might have been due to increased electro-chemically accessible surface areas, increased electronic conductivity, and easier charge-transfer at polymer-electrolyte interfaces, allowing higher dispersion and utilization of the deposited Pt nano-particles. Microstructure, morphology and crystallinity of the synthesized materials were investigated using X-ray diffraction and transmission electron microscopy. The results showed successful deposition of Pt nano-particles, with crystallite size of about 2.7 nm, on the PPy-RGO support film. Catalytic activity for methanol electro-oxidation in fuel cells was investigated using cyclic voltammetry. The fundamental electrochemical test results indicated that the electro-catalytic activity, for methanol oxidation, of the Pt/PPy-RGO combination was much better than for commercial catalyst.

A Study on Composite Materials Frame of Electric Vehicles using Impact Analysis (충돌해석을 이용한 전기자동차 복합소재 프레임 설계에 관한 연구)

  • Ahn, Tae-Kyeong;Lee, Young-Jin;Lee, Sang-Chan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.2
    • /
    • pp.75-80
    • /
    • 2020
  • In this study, we designed car frames for collision analysis using carbon fiber reinforced polymer (CFRP) as the lighter composite material. The impact conditions were 100 percent frontal impact, 40 percent frontal impact, and 90 degrees side impact. The impact analysis measured the maximum stress at velocities of 20km/h and 40km/h for each condition and evaluated the vulnerable points in the car frame. Additional supports have been designed both to improve the weak points in existing vehicle frames, and to be taken into account when new parts are assembled. Our impact analysis compared the results of maximum stress on the car frame with and without the support.

A Study on the construction method of reinforced shotcrete using structural synthetic fiber (터널 지보특성 개선을 위한 보강함성섬유 숏크리트공법 연구)

  • Han, Il-Yeong;Kim, Bang-Lae;Won, Jong-Pil
    • 한국터널공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.259-261
    • /
    • 2005
  • The needs of improving the performance of wet shotcrete has become one of the most important issues in the tunnel field. The aim of this paper is to research the construction method of reinforced shotcrete using structural polymer fiber which exhibits a high quality in toughness and durability for the support of tunnel.

  • PDF

Earthquake performance of FRP retrofitting of short columns around band-type windows

  • Kocak, Ali
    • Structural Engineering and Mechanics
    • /
    • v.53 no.1
    • /
    • pp.1-16
    • /
    • 2015
  • Due to design codes and regulations and the variety of building plans in Turkey, it is very often seen that band-type windows are left for ventilation and lightening of the basements of buildings which are used for various purposes such as workplaces and storage. Therefore when the necessary support measures cannot be given, short columns are subjected to very high shear forces and so damage occurs. One of the precautions to avoid the damage of short column mechanisms in buildings where band-type windows are in the basement is to strengthen the short columns with fiber reinforced polymer (FRP). In this study, the effect of the FRP retrofitting process of the short columns around band-windowed structures, which are found especially in basement areas, is analyzed in accordance with Turkish Seismic Code 2007 (TSC 2007). Three different models which are bare frame, frame with short columns and retrofitted short columns with FRP, are created and analyzed according to TSC 2007 performance analysis methods to understand the effects of band windows in basements and the effect of FRP retrofitting.

Aqueous Polymerization of Acrylamide Initiated by Periodic Acid and Its Kinetics

  • Cho, Myung-Rae;Han, Yang-Kyoo;Kim, Bum-Sung
    • Macromolecular Research
    • /
    • v.8 no.4
    • /
    • pp.147-152
    • /
    • 2000
  • The activity of periodic acid as an initiator for the polymerization of acrylamide in aqueous medium was investigated. The rate of polymerization was found to be proportional to the monomer concentration to the 1.5th power in the range of 1.41-5.64 mol/L. The reaction order to the periodic acid concentration was 0.49, which indicated a bimolecular mechanism for the termination reaction in the range of 0.5-4.0$\times$10$\^$-2/ mol/L. Propagation rate increased with raising the temperature according to an Arrhenius expression resulting in the exhibition of an apparent activation energy of 87.8 kJ/mol in the temperature range of 60-80$\^{C}$. The addition of hydroquinone as a radical scavenger stopped the polymerization of acrylamide initiated by periodic acid. These results support that the polymerization proceeds via a radical chain mechanism .

  • PDF

Experimental-numerical study on the FRP-strengthened reinforced concrete beams with a web opening

  • Abdullah Rafiq Safiaa;Suryamani Behera;Rimen Jamatia;Rajesh Kumar;Subhajit Mondal
    • Advances in concrete construction
    • /
    • v.15 no.5
    • /
    • pp.321-331
    • /
    • 2023
  • The effect of fibre-reinforced polymer (FRP) strengthening on the behaviour of reinforced concrete (RC) beams with web openings is studied. It has been observed that the load-carrying capacity and deflection in the presence of an opening reduced by approximately 50% and 75%, respectively. Three-dimensional nonlinear finite models are first validated with the results obtained from experimental data. Thereafter, a series of parametric studies are conducted for the beam with an opening. In the study, it is observed that a square opening shape is critical in comparison to the elliptical and circular-shaped opening. The web opening located near the support is found to be critically compared to the opening in the middle of the beam. Given the critical opening shape situated at the critical location, the increase in FRP layers enhances the load-deformation behaviour of the FRP-wrapped RC beam. However, the load-deformation responses are not significantly improved beyond a certain threshold value of FRP layers.