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Abstract
In this study, an electro-catalyst of Pt nanoparticles supported by polypyrrole-functionalized 
graphene (Pt/PPy-reduced graphene oxide [RGO]) is reported. The Pt nanoparticles are de-
posited on the PPy-RGO composite by chemical reduction of H2PtCl6 using NaBH4. The 
presence of graphene (RGO) caused higher activity. This might have been due to increased 
electro-chemically accessible surface areas, increased electronic conductivity, and easier 
charge-transfer at polymer-electrolyte interfaces, allowing higher dispersion and utiliza-
tion of the deposited Pt nano-particles. Microstructure, morphology and crystallinity of the 
synthesized materials were investigated using X-ray diffraction and transmission electron 
microscopy. The results showed successful deposition of Pt nano-particles, with crystallite 
size of about 2.7 nm, on the PPy-RGO support film. Catalytic activity for methanol electro-
oxidation in fuel cells was investigated using cyclic voltammetry. The fundamental electro-
chemical test results indicated that the electro-catalytic activity, for methanol oxidation, of 
the Pt/PPy-RGO combination was much better than for commercial catalyst.
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1. Introduction

The direct methanol fuel cell (DMFC) is an extremely promising power source for por-
table applications due to its simple handling and processing of fuel. DMFCs have several ad-
vantages (e.g., high energy-conversion efficiency, simple design, and environmental friend-
liness) compared with hydrogen, for applications involving transportation and portable 
electronic systems. Such fuel cells can provide a clean power source with high theoretical 
energy density and low cost, without requiring a separate hydrogen generation system [1]. 
Despite many efforts devoted to development of the DMFC, there still remain difficulties 
to be overcome in terms of efficiency and power density. Commercialization of these fuel 
cells has been facing serious difficulty due to kinetic constraints on the methanol oxidation 
reaction. To this end, Pt-based electro-catalysts for the methanol electro-oxidation reaction 
in acid solution has been widely studied in recent years, but high cost and limited quantities 
have prevented Pt from being used at commercial levels [2]. In addition, the Pt electro-
catalyst is poisoned by intermediate products of methanol oxidation (e.g., COads). Since the 
mid-1970s, modification of the catalyst surface has been made by the addition of a second, 
less expensive metal to the platinum to selectively direct methanol electro-oxidation to the 
platinum particles [3]. The electro-catalytic activity of Pt-based catalysts can be substantially 
enhanced by incorporation of other metals or oxides to form binary-alloy catalysts (i.e., 
PtRu, PtSn, PtFe, and PtCo) [4-6]. Conductive polymers, with highly accessible surface 
areas and high stability, have also been used to improve the activity of the graphene support 
layer and to enhance dispersal of the metal [7]. With this in mind, we developed a facile 
and efficient way to deposit Pt nano-particles using polypyrrole, on reduced graphene ox-
ide (RGO) functionalized with conducting polymer. All the results demonstrated that, with 
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Where d is the average particle size (nm), l is the wavelength 
of the X-ray used (0.15406 nm), B2q is the width of the diffrac-
tion peak at half height in radians, and qmax is the angle at the 
position of the peak maximum. The calculated mean sizes of Pt 
particles were found to be 2.7 and 2.4 nm for the Pt/RGO and Pt/
PPy-RGO electro-catalysts, respectively.

Fig. 3 shows the CV of Pt/RGO and Pt/PPy-RGO in 0.5 M 
H2SO4 solution at 20 mV/S in a potential window of -0.2 to 
1.0 V vs. SCE. Well-defined hydrogen desorption and adsorp-
tion peaks in the potential range of -0.05 to +0.3 V, and ir-
reversible pre-oxidation and reduction peaks in the potential 
range of +0.5 to +1.0 V were observed. The electrochemi-
cally active surface area (EAS) was determined by assuming 
that a monolayer of adsorbed hydrogen requires 210 μC/cm2 
for its oxidation [12]. The EAS was then calculated using the 
following equation [13]. 

high electronic conductivity and easier charge transfer, this Pt/
PPy-RGO combination exhibited the higher activity and stabil-
ity than widely used commercial catalysts.

2. Experimental

Graphite oxide was synthesized from natural graphite (SP-1, 
Bay carbon) by a modification of Hummer’s method [8]. The 
graphite powder was added to a mixture of sulfuric acid, sodium 
nitrate, potassium permanganate for the acid treatment. The 
oxidized and treated solution was filtered and washed with HCl 
(10%); then subjected to centrifugation (3600 rpm, 5 min) to 
remove residual graphite. The product of synthesis of PPy-RGO 
composites from 35 mg of graphene and 20 mg of pyrrole, was 
homogenously dispersed in ethanol-water solution (1:1), then 
excess (NH4)2S2O8 was slowly added to the suspension, which 
was stirred continuously at 0-5°C for 8 h. Finally, the resulting 
PPy-graphene powder was filtered and rinsed, first with water; 
then with ethanol, until the filtrate was colorless. The black pow-
der so obtained was freeze-dried overnight. The product of syn-
thesis of the Pt/PPy-RGO composites, using Pt/PPy-RGO at 20 
wt% Pt loading, was then used as seeds. The PPy-functionalized 
RGO (0.1 g) was mixed ultrasonically with H2PtCl6∙6H2O in 
ethylene glycol, after which the pH was adjusted to 10-11 by 
adding NaOH (1.0 M). The solution was subjected to ultrasoni-
cation for 10 min, and N2 bubbling for 20 min; then stirred for 4 
h at 120°C. After reaction, the resulting solid, black product was 
isolated by centrifugation, washed with distilled water and etha-
nol to remove any remaining ions in the final products, and then 
freeze-dried overnight. This final product is called PPy-RGO 
supported, Pt nano-particles. 

3. Results and Discussion

The morphology of the Pt/PPy-RGO product and the deposi-
tion of the Pt nano-particles were characterized by transmission 
electron microscopy (TEM). In Fig. 1a, sheet-like graphene with 
crimple can be observed. In Fig. 1b, these PPy-assisted, gra-
phene nano-sheets were exfoliated from graphite, and exhibited 
a smooth, paper-like structure. TEM images of Pt/RGO and Pt/
PPy-RGO are shown in Figs. 1c and d, respectively. In Fig. 1c, 
the Pt/GO combination is shown condensed with other platinum 
nano-particles, which caused an increase in particle diameters 
and subsequent decrease in the activity at the Pt nano-particle 
sites, compared with those of the Pt/PPy-RGO combination.

The X-ray diffraction (XRD) patterns of the Pt/RGO (a) and 
Pt/PPy-RGO (b) in Fig. 2 revealed distinguishing diffraction 
peaks. The graphite showed (002) a diffraction peak at 2q = 
26.5° [9], but for Pt/PPy-RGO, the diffraction peaks of C (002) 
plane-shifted negatively. These peaks appeared at 24.8° and 
24.1°, corresponding to an interlayer space of 0.337 nm, and 
implied successful preparation of the PPy-RGO. The diffraction 
peaks at 2q = 40.2°, 46.4° and 68.2° could be attributed to the 
(111), (200) and (220) crystalline planes of the face-centered cu-
bic structure, respectively, of the Pt [10]. The Pt (220) peaks can 
be used to calculate the average Pt particle size according to the 
Scherrer equation [11]:

Fig. 1. Transmission electron microscopy images of (a) graphene, (b) 
PPy-graphene, (c) Pt/RGO and (d) Pt/PPy-RGO. RGO: reduced graphene 
oxide.

Fig. 2. X-ray diffraction patterns of (a) Pt/RGO and (b) Pt/PPy-RGO. RGO: 
reduced graphene oxide.
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Ib. The higher anodic current of Pt/PPy-RGO indicated that the 
electric conductivity of graphene was higher than the commer-
cial carbon, a result consistent with previous reports [15]. All of 
the above data reveal that the Pt/PPy-RGO combination exhibits 
enhanced catalytic activity for methanol oxidation.

4. Conclusions

In summary, a convenient and green approach was used to 
synthesize Pt nano-particles on polypyrrole-assisted graphene 
for methanol oxidation. XRD and TEM were used to character-
ize the morphology and structure of the catalysts. The electro-
catalytic activities were measured by CV. In comparison with 
graphene as the support for the catalyst, the polypyrrole-assisted 
graphene can effectively enhance the electro-catalytic activity 
of the Pt nanoparticles for the oxidation of methanol. This was 
due to an increase in the conductivity of the graphene, by the 
insertion of polypyrrole. All the results indicated that the Pt/
PPy-RGO combination is the more promising catalyst for fuel 
cell applications.
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