• Title/Summary/Keyword: Polymer scaffold

Search Result 133, Processing Time 0.034 seconds

Preparation of PHBV/Collagen Nanofibrous Mats and their Tissue Compatibility Compatibilscaffolds for tissue engineering

  • Meng, Wan;Kim, Se-Yong;Yuan, Jiang;Kim, Jung-Chul;Kwon, Oh-Hyeong;Ito, Yoshihiro;Kang, Inn-Kyu
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.50-51
    • /
    • 2006
  • The nanofibrous scaffolds were obtained by co-electrospinning PHBV and collagen Type I in HIFP. The resulting fiber diameters were in the range between 300 and 600 nm. The nanofiber surfaces were characterized by ATR-FTIR, ESCA and AFM. The PHBV and collagen components of the PHBV-Col nanofibrous scaffold were biodegraded by PHB depolymerase and a collagenase Type I aqueous solution, respectively. It was found, from the cell-culture experiment, that the PHBV-Col nanofibrous scaffold accelerated the adhesion of the NIH 3T3 cell compared to the PHBV nanofibrous scaffold, thus showing a good tissue engineering scaffold.

  • PDF

Effect of Gelatin Particles on Cell Proliferation in Polymer Scaffolds Made Using Particulate Leaching Technique. (Particulate Leaching 기법을 사용한 Polymer Scaffold 상의 세포증식에 있어서 젤라틴 입자의 효과)

  • 서수원;신지연;김진훈;김진국;길광현
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.1
    • /
    • pp.1-4
    • /
    • 2004
  • On the background of general idea and technique of bioscience, medicine and engineering, tissue engineering aim at maintenance, improvement and repair of human body function through manufacturing and transplantation of artificial tissue and organ exchangeable human body. Basic material used in the area is scaffold that aid tissue and organ formation. Making scaffold, solvent-casting and particulate leaching technique is widely used in manufacturing of porous polymer scaffold. There are many types of particle including salt and gelatin. Salt is a most commonly used particulate because it is easily available and very easy to handle and gelatin particle is another candidate for this method because it is known as a material, which enhances cell attachment and proliferation. But there is no comparative study of two kinds of materials. In this study we compared the biocompatibility of the two scaffolds made from salt(salt scaffold) and gelatin particle (gelatin scaffold). These results demonstrated that gelatin scaffold showed better attachment of cells at the initial stage and better proliferation of cells. The better performance of gelatin scaffold is contributed to the better connection of pores in the same porosity.

Sustained Release of Proteins Using Small Intestinal Submucosa Modified PLGA Scaffold (SIS로 개질된 PLGA 담체에서의 단백질의 서방화)

  • Ko, Youn-Kyung;Choi, Myung-Kyu;Kim, Soon-Hee;Kim, Geun-Ah;Lee, Hai-Bang;Rhee, John-M.;Khang, Gil-Son
    • Polymer(Korea)
    • /
    • v.32 no.3
    • /
    • pp.199-205
    • /
    • 2008
  • In this study, we fabricated poly (lactide-co-glycolide) (PLGA) scaffold modified with small intestinal submucosa (SIS) as a drug delivery matrix of bioactive molecules. SIS derived from the submucosa layer of porcine intestine has been widely used as biomaterial because of low immune response. PLGA scaffold was prepared by the method of solvent casting/salt leaching. Novel composite scaffolds of SIS/PLGA were manufactured by simple immersion method of PLGA scaffold in SIS solution under vacuum. SEM observation shows that PLGA and SIS/PLGA scaffolds have interconnective and open pores. Especially, SIS/PLGA scaffold showed that micro-sponge of SIS with interconnected pore structures were formed in the pores of PLGA scaffold. In order to assay release profile of proteins, we manufactured FITC conjugated BSA loaded PLGA and SIS/PLGA scaffold. And the release amount was identified by fluorescence intensity using the fluorescence spectrophotometer. The initial burst of BSA containing SIS/PLGA scaffolds was lower than that of PLGA scaffolds resulting in constant release. And release of BSA in SIS/PLGA scaffold was fast and incremental because of the increased content of BSA. In conclusion, we confirmed that penetrated SIS solution prevented the initial burst of BSA and PLGA modified with SIS scaffold is useful as protein carriers with controlled release pattern.

Performance Improvement of Polymer Deposition System by Nozzle Guide and Its Application to Washer Scaffold Fabrication (노즐 가이드를 적용한 폴리머 적층 시스템의 Washer Scaffold 제작을 위한 성능 개선)

  • Sa, Min-Woo;Kim, Jong Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.3
    • /
    • pp.249-257
    • /
    • 2013
  • Rapid prototyping was used to design and develop a three-dimensional (3D) scaffold for tissue engineering application. In this study, the nozzle guide (TB-CP-HN, MUSASHI ENGINEERING, INC., JAPAN) used with the syringe of the polymer deposition system (PDS) was evaluated by measuring the scaffold line width and height. 3D scaffolds were fabricated using a biodegradable polymer called poly-caprolactone (PCL). The PCL polymer can be deposited from the needle of a syringe using a 200-${\mu}m$ precision nozzle, at a pressure of 600 kPa and temperature of $125^{\circ}C$. The advantages and improvements in this nozzle guide were addressed through washer scaffold fabrication. Overall, this research indicated that the fabrication of a complex-shaped scaffold using an enhanced polymer deposition system may have potential for tissue engineering.

Bio-degradable 3D-scaffold fabrication using rapid-prototyping system (쾌속조형시스템을 이용한 생체 조직 재생용 지지체 제작과 특성분석)

  • Kim, Ji-Woong;Park, Ko-Eun;Lee, Jun-Hee;Park, Su-A;Kim, Wan-Doo
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1697-1699
    • /
    • 2008
  • The purpose of tissue engineering is to repair or replace damaged tissues or organs by a combination of cells, scaffold, suitable biochemical and physio-chemical factors. Among the three components, the biodegradable scaffold plays an important role in cell attachment and migration. In this study, we designed 3D porous scaffold by Rapid Prototyping (RP) system and fabricated layer-by-layer 3D structure using Polycarprolactone (PCL) - one of the most flexible biodegradable polymer. Furthermore, the physical and mechanical properties of the scaffolds were evaluated by changing the pore size and the strand diameter of the scaffold. We changed nozzle diameter (strand diameter) and strand to strand distance (pore size) to find the effect on the mechanical property of the scaffold. And the surface morphology, inner structure and storage modulus of PCL scaffold were analyzed with SEM, Micro-CT and DMA.

  • PDF

Fabrication of Blended PCL/β-TCP Scaffolds by Mixture Ratio of β-TCP using Polymer Deposition System (폴리머 적층 시스템을 이용한 β-TCP 혼합 비율에 따른 PCL/β-TCP 인공지지체의 제작)

  • Ha, Seong-Woo;Kim, Jong Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.9
    • /
    • pp.791-797
    • /
    • 2014
  • Abstract Scaffold used as a carrier of the cell has been actively conducted using plenty of technology in tissue engineering. ${\beta}$-tricalcium phosphate (${\beta}$-TCP) material has shown good biocompatibility and osteoconductive ability when it was implanted as a bone graft substitute in osseous defect in human and animal studies for bone regeneration. In this study, we fabricated the blended polycaprolactone (PCL) and ${\beta}$-TCP scaffold by the polymer deposition system (PDS). The PCL/${\beta}$-TCP scaffold was fabricated at a temperature of $110^{\circ}C$, pressure of 650 kPa, and scan velocity of 100 mm/sec. The Overall geometry and size of the scaffold were fixed circle type with a diameter of 10 mm and a height of 4 mm. PCL/${\beta}$-TCP scaffold was observed by scanning electron microscopy. Cell attachment and proliferation of the scaffold containing 30 wt% ${\beta}$-TCP was superior to those containing 10 wt% and 20 wt% ${\beta}$-TCP.

Biodisc Tissue-Engineered Using PLGA/DBP Hybrid Scaffold (DBP/PLGA 하이브리드 담체를 이용한 조직공학적 바이오 디스크 개발)

  • Ko, Youn-Kyung;Kim, Soon-Hee;Jeong, Jae-Soo;Ha, Hyun-Jung;Yoon, Sun-Jung;Rhee, John-M.;Kim, Moon-Suk;Lee, Hai-Bang;Khang, Gil-Son
    • Polymer(Korea)
    • /
    • v.31 no.1
    • /
    • pp.14-19
    • /
    • 2007
  • Demineralized bone particle (DBP) has been used as one of the powerful inducers of bone and cartilage tissue specialization. In this study, we fabricated DBP/PLGA scaffold for tissue engineered disc regeneration. We manufactured dual-structured scaffold to compose inner cylinder and outer doughnut similar to nature disc tissue. The DBP/PLGA scaffold was characterized by porosity, wettability, and water uptake ability. We isolated and cultured nucleus pulposus (NP) and annulus fibrosus (AF) cells from rabbit intervertebral disc. We seeded NP cells into the inner core of the hybrid scaffold and AF cells into the outer portion of it. Cellular viability and proliferation were assayed by 3-(4,5-dimethylthiazole-2-yl) -2,5- diphenyltetrazolium -bromide (MTT) test. PLGA and PLGA/DBP scaffolds were implanted in subcutaneous of athymic nude mouse to observe the formation of disc-like tissue in vivo. And then we observed change of morphology and hematoxylin and eosin (H&E). Formation of disc-like tissue was better DBP/PLGA hybrid scaffold than control. Specially, we confirmed that scaffold impregnated 20 and 40% DBP affected to proliferation of disc cell and formation of disc-like tissue.

Synthesis of Hyaluronic Acid Scaffold for Tissue Engineering and Evaluation of Its Drug Release Behaviors (히아루론산을 이용한 조직공학용 Scaffold의 제조와 약물 방출 거동에 관한 연구)

  • Nam, Hye-Sung;Kim, Ji-Heng;An, Jeong-Ho;Chung, Dong-June
    • Polymer(Korea)
    • /
    • v.25 no.4
    • /
    • pp.476-485
    • /
    • 2001
  • In this study, we tried to design and synthesize using natural polymers (hyaluronic acid and sodium alginate) and also to make some kinds of scaffolds as sponge type for reducing the burst effect of loaded drug from them. Photo-dimerizable group was incorporated to hyaluronic acid and degradable hydrogel was prepared by the UV radiation of the polymer. The pore size and its distribution of scaffold were controlled by changing microsphere production conditions such as solution concentration and spraying pressure. It was found that drug release behavior from synthesized scaffolds was affected by hybridization of two naturally originated polymers (cinnamoylated tetrabutylammonium hyaluronate: CHT and cinnamolylated sodium alginate: CSA) and the obtained scaffolds were degraded in fairly long time (about 2 months) under in vitro environment. Therefore, we expect that obtained scaffolds can be applicable for the tissue regeneration scaffolds in the fields of orthopaedic surgery.

  • PDF

Preparation and Characterization of Hyaluronic Acid Loaded PLGA Scaffold by Emulsion Freeze-Drying Method (히알루론산을 함유한 PLGA 지지체의 제조 및 특성결정)

  • Ko, Youn-Kyung;Kim, Soon-Hee;Jeong, Jae-Soo;Park, Jung-Soo;Lim, Ji-Ye;Kim, Moon-Suk;Lee, Hae-Bang;Khang, Gil-Son
    • Polymer(Korea)
    • /
    • v.31 no.6
    • /
    • pp.505-511
    • /
    • 2007
  • Poly(lactide-co-glycolide)(PLGA) and hyaluronic acid (HA) has been widely used as biocompatible scaffold materials to regenerate tissue. In this present study, we fabricated microporous PLGA and HA loaded PLGA scaffolds by a emusion freeze-drying method. In order to confirm that the release profile of cytokine or water-soluble drugs, we manufactured the granulocyte macrophage colony stimulating factor(GM-CSF) loaded PLGA and HA-PLGA scaffold. All scaffolds were characterized using scanning electron microscope(SEM), mercury porosimeter and wettability measurement. Cell proliferation and viability were assessed by a 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium-bromide (MTT) test. The porosity of HA-PLGA scaffold was greater than 95% with the total pore area of $261\;m^2/g$. The HA-FLGA scaffold exhibited well interconnected pores to allow greater cell adhesion and prolixferation. It was proven by higher cell viability in the HA-PLGA scaffold than PLGA alone. This may be due to the enhanced natural properties and higher water retention capacity of HA.

Biodegradable Polymer-Nanoceramic Composite for Bone Regeneration

  • Kim, Sang-Soo;Park, Min-Sun;Kim, Byung-Soo
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.179-179
    • /
    • 2006
  • PLGA/HA composite scaffold fabricated by GF/PL method showed enhanced mechanical property, hydrophilicity and osteoconductivity compared with the SC/PL scaffolds, and this enhancement was most likely due to a higher extent of exposure of HA particles to the scaffold surface. The biodegradable polymer/bioceramic composite scaffolds fabricated by the GF/PL method could enhance bone regeneration efficacy for the treatment of bone defects compared with conventional composite scaffolds.

  • PDF