• 제목/요약/키워드: Polymer nanocomposites

검색결과 371건 처리시간 0.022초

폴리(에틸 아크릴레이트-co-t-부틸 아크릴레이트)/ 실리카 나노복합체 특성에 대한 계면 개질의 효과 (Effect of Interfacial Modification on the Characteristics of Poly(ethyl acrylate-co-t-butyl acrylate)/Silica Nanocomposites)

  • 진선욱;한건옥;김형일
    • 폴리머
    • /
    • 제28권6호
    • /
    • pp.487-493
    • /
    • 2004
  • 계면간 상호작용이 약한 폴리(에틸 아크릴레이트-co-t-부틸 아크릴레이트) (PEB) 에멀션 고분자를 사용한 나노복합체 혼합용액에서는 pH변화에 따라 고분자 입자들과 실리카 나노입자들의 분포 형태가 결정되었다. 이러한 나노복합체는 실리카 입자의 응집이 심하였고 불규칙적인 분산성을 나타내었다. 메타아크릴옥시프로필트리메톡시실란 (MPS)를 사용하여 개질한 용액 중합 고분자나 실리카 나노입자를 사용한 나노복합체에서는 계면간 강한 상호작용으로 인하여 실리카 나노입자가 미세하게 분산되었고 코어-쉘 형태학적 특성을 나타냈다. 계면을 MPS로 개질한 나노복합체에서는 강한 수소 결합 상호작용이 존재하는 것을 적외선 분광계로 확인하였다. 강한 계면 상호작용을 갖는 나노복합체는 고분자 사슬의 유리 전이 온도가 증가하였고 ΔC$_{p}$ 는 감소하였으며 열분해 온도는 상승되었다.며 열분해 온도는 상승되었다.

MMT 첨가에 따른 Polyamide/MMT 나노복합체의 흡습 특성 (Effect of MMT on Anti-Water Absorption of Polyamide/MMT Nanocomposites)

  • 박상철;김호겸;민경은
    • 폴리머
    • /
    • 제37권1호
    • /
    • pp.113-120
    • /
    • 2013
  • Pilot scale에서의 나노복합체의 상용화를 위해 용융 삽입법을 적용하고 이축 압출기로 제조한 polyamide/MMT 나노복합체의 흡습 특성을 연구한 결과, MMT 도입으로 수분 흡수율이 감소되었으며 그에 따라 치수 안정성이 향상되었다. 굴곡강도 및 탄성률은 수분 흡수율이 증가함에 따라 저하되었으며, 이로부터 MMT의 도입은 강도 향상효과와 함께 흡습방지를 통한 강도 저하 억제효과도 보이는 것으로 조사되었다.

산화 그래핀과 나노 흑연이 폴리스티렌 나노복합재료의 유변물성 및 전기적 물성에 미치는 영향 (Influence of Graphene Oxide and Graphite Nanoplatelets on Rheological and Electrical Properties of Polystyrene Nanocomposites)

  • 염효열;나효열;이성재
    • 폴리머
    • /
    • 제38권4호
    • /
    • pp.502-509
    • /
    • 2014
  • 탄소기반 판상형 나노재료인 산화 그래핀(GO)과 나노 흑연(GNP)은 고분자재료에 전기 전도성을 부여하기 위한 복합재료용 나노필러로 사용되고 있다. 본 연구에서는 폴리스티렌(PS)에 나노필러를 첨가한 PS/GO와 PS/GNP 나노복합재료를 라텍스 기법으로 제조한 다음 유변학적, 전기적 물성을 비교 고찰하였다. PS 입자는 무유화제 유화중합으로 중합하였으며, GO는 흑연으로부터 modified Hummers 방법으로 합성하였다. 친수성인 GO는 첨가제 없이 PS 수성 현탁액에 분산하였으며, GNP는 분산성을 높이기 위해 계면활성제를 첨가하여 분산하였다. 나노필러에 따른 유변물성은 GO가 GNP에 비해 높게 나타났는데, GO는 단일층으로 분산이 가능한 반면, GNP는 다수의 층이 겹쳐진 형태이므로 나노 규모의 균질한 분산을 이루지 못하기 때문이다. 전도성 통로가 형성되는 지점인 전기적 임계점은 PS/GO, PS/GNP 나노복합재료에 대하여 각각 0.50, 5.82 wt%로 나타났다. PS/GO 나노복합재료가 우수한 전기 전도도를 보여주는 이유는 성형 시 열처리에 의해 GO가 환원되기 때문이다.

Development of Poly(methyl methacrylate)-Clay Nanocomposites by Using Power Ultrasonic Wave

  • Ryu, Joung Gul;Lee, Jae Wook;Kim, Hyungsu
    • Macromolecular Research
    • /
    • 제10권4호
    • /
    • pp.187-193
    • /
    • 2002
  • Several methods have been used to synthesize polymer-clay nanocomposites. In-situ polymerization with clay belongs to a classical way to develop nano-structured materials, while melt intercalation is being recognized as another useful approach due to its versatility and environmentally benign character. In this research, we prepared polymer-clay nanocomposites based on the poly (methyl methacrylate) and organically modified montmorillonite via two-stage sonication process. According to the unique mode of power ultrasonic wave, the sonication during processing led to enhanced breakup of the clay agglomerates and reduction in size of the dispersed phase. Optimum conditions to form stable exfoliated nanocomposites were studied for various compositions and conditions. It was found that a novel attempt carried out in this study yielded further improvement in the mechanical performance of the nanocomposites compared to those produced by the conventional melt mixing process, as revealed by DMA, XRD and TEM. And rheological properties of nanocomposites were measured by ARES. As a result, sonicated PMMA-clay nanocomposites exhibits enhanced properties such as storage modulus and thermal stability than that of neat PMMA.

Disordering of Clay Layers in the Nylon 6/Clay Nanocomposites Prepared by Anionic Polymerization

  • Park Jung Hoon;Kim Woo Nyon;Kye Hyoung-san;Lee Sang-Soo;Park Min;Kim Junkyung;Lim Soonho
    • Macromolecular Research
    • /
    • 제13권5호
    • /
    • pp.367-372
    • /
    • 2005
  • As a preliminary work for the preparation of nylon 6/c1ay nanocomposites by reactive extrusion, nylon 6/c1ay nanocomposites were prepared by anionic polymerization in a flask. In order to investigate the effect of the intercalation of clay layers, the clay feeding times, such as in pre-mixing where the clay was fed before initiation of polymerization and in after-mixing method where the clay was fed after initiation of polymerization, were changed. The appearance of the WAXD peak of nanocomposites prepared by the pre-mixing method was obvious and the tensile strength was decreased compared with that of pure nylon 6, which indicates that the clay layers were not dispersed and distributed. During the preparation of the nanocomposites by the after-mixing method, disordering of the clay layers was observed with increasing clay addition time and was suspected to result from the rapid polymerization of nylon 6 within the clay layers.

Preparation of PET Nanocomposites: Dispersion of Nanoparticles and Thermal Properties

  • Her, Ki-Young;Kim, Dae-Heum;Lim, Soon-Ho
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제9권4호
    • /
    • pp.71-73
    • /
    • 2008
  • The development of polymer/inorganic nanocomposites has attracted a great deal of interest due to the improved hybrid properties derived from the two different components. Various nanoscale fillers have been used to enhance polymer mechanical and thermal properties, such as toughness, stiffness, and heat resistance. The effects of the filler on the final properties of the nanocomposites are highly dependent on the filler shape, particle size, aggregate size, surface characteristics, polymer/inorganic interactions, and degree of dispersion. In this paper, we describe the influence of different $CaCO_3$ dispersion methods on the thermal properties of polyethylene terephthalate (PET)/$CaCO_3$ composites: i.e., the adsorption of $CaCO_3$ on the modified PET surface, and the hydrophobic modification of the hydrophilic $CaCO_3$ surface. We prepared PET/$CaCO_3$ nanocomposites using a twin-screw extruder, and investigated their thermal properties and morphology.

용융혼합법을 이용한 생붕괴성 나노복합재의 제조 및 분석 (Preparation and Characterization of Biodestructive Nanocomposites by Melt Intercalation Method)

  • Lee, Su-kyung;Youn, Jae-Ryoun
    • 한국섬유공학회:학술대회논문집
    • /
    • 한국섬유공학회 2003년도 가을 학술발표회 논문집
    • /
    • pp.59-62
    • /
    • 2003
  • Nanocomposites are composite materials consisting of polymer matrix and layered silicate that are interacted in nanometer scale. Layered silicate based polymer nanocomposites have attracted considerable attention because of their excellent properties. Nanocomposites usually exhibit improved performance properties compared with conventional composites due to their unique phase morphology and improved interfacial properties. (omitted)

  • PDF

이산화티탄 나노입자 필러가 PET와 PLA 나노복합체의 특성에 미치는 영향 (Influence of TiO2 Nanoparticle Filler on the Properties of PET and PLA Nanocomposites)

  • Farhoodi, Mehdi;Dadashi, Saeed;Mousavi, Seyed Mohammad Ali;Sotudeh-Gharebagh, Rahmat;Emam-Djomeh, Zahra;Oromiehie, Abdolrasul;Hemmati, Farkhondeh
    • 폴리머
    • /
    • 제36권6호
    • /
    • pp.745-755
    • /
    • 2012
  • Two types of polymers were tested in this study; poly(ethylene terephthalate) (PET) as a synthetic example and poly(lactic acid) (PLA) as a natural polymer. DSC analyses showed that the use of nanofiller increased the degree of crystallinity ($X_c$) of both PET and PLA polymers, but the effect was more noticeable on PET nanocomposites. The crystallization of PLA and PET nanocomposites occurred at higher temperatures in comparison to neat polymers. According to dynamic mechanical-thermal analysis (DMTA), the damping factor of PET/$TiO_2$ nanoparticles decreased compared to the neat matrix, but for PLA nanocomposites the opposite trend was observed. Results of the mechanical test showed that for both PET and PLA nanocomposites, the most successful toughening effect was observed at 3 wt% loading of $TiO_2$ nanoparticles. SEM micrographs revealed uniform distribution of $TiO_2$ nanoparticles at 1 and 3 wt% loading levels. The results of WAXD spectra explained that the polymorphs of PLA and PET was not affected by $TiO_2$ nanoparticles. UV-visible spectra showed that $TiO_2$ nanocomposite films had high ultraviolet shielding compared to neat polymer, but there was significant reduction in transparency.

Rheological Behavior of Polymer/Layered Silicate Nanocomposites under Uniaxial Extensional Flow

  • Park Jun-Uk;Kim Jeong-Lim;Kim Do-Hoon;Ahn Kyung-Hyun;Lee Seung-Jong;Cho Kwang-Soo
    • Macromolecular Research
    • /
    • 제14권3호
    • /
    • pp.318-323
    • /
    • 2006
  • We investigated the rheological behaviors and orientation of three different types of layered silicate composite systems under external flow: microcomposite, intercalated and exfoliated nanocomposites. Rheological measurements under shear and uniaxial extensional flows, two-dimensional, small-angle X-ray scattering and transmission electron microscopy were conducted to investigate the properties, as well as nano- and micro-structural changes, of polymer/layered silicate nanocomposites. The preferred orientation of the silicate layers to the flow direction was observed under uniaxial extensional flow for both intercalated and exfoliated systems, while the strain hardening behavior was observed only in the exfoliated systems. The degree of compatibility between the polymer matrix and clay determined the microstructure of polymer/clay composites, strain hardening behavior and spatial orientation of the clays under extensional flow.

Acoustically-enhanced particle dispersion in polystyrene/alumina nanocomposites

  • Philip, Mercy A.;Natarajan, Upendra;Nagarajan, Ramamurthy
    • Advances in nano research
    • /
    • 제2권2호
    • /
    • pp.121-133
    • /
    • 2014
  • Polymer nanocomposites are advanced nanomaterials which exhibit dramatic improvements in various mechanical, thermal and barrier properties as compared with the neat polymer. Polystyrene/ alumina nanocomposites were prepared by an ultrasound-assisted solution casting method at filler loadings ranging from 0.2 to 2% and also at different ultrasonic frequencies, viz. 58 kHz, 192/58 kHz, 430 kHz, 470 kHz and 1 MHz. The composites were subjected to mechanical property tests (tensile and impact tests) and cavitation erosion tests to study the enhancement in functional properties. Filler dispersion in the polymer matrix was observed by SEM analysis. The effect of frequency on filler dispersion in the matrix was studied by SEM analysis and functional property enhancement of the composite material. The composites prepared at dual (high/ low) frequency (192/58 kHz) were found to show better property enhancement at low filler loadings as compared with neat polymer and also with composites prepared without ultrasound, thus reinforcing the finding that ultrasound-assisted synthesis is a promising method for the synthesis of nanocomposites.