• 제목/요약/키워드: Polymer memory

검색결과 117건 처리시간 0.026초

Compressive behavior of concrete confined with iron-based shape memory alloy strips

  • Saebyeok, Jeong;Kun-Ho E., Kim;Youngchan, Lee;Dahye, Yoo;Kinam, Hong;Donghyuk, Jung
    • Earthquakes and Structures
    • /
    • 제23권5호
    • /
    • pp.431-444
    • /
    • 2022
  • The unique thermomechanical properties of shape memory alloys (SMAs) make it a versatile material for strengthening and repairing structures. In particular, several research studies have already demonstrated the effectiveness of using the heat activated shape memory effect of nickel-titanium (Ni-Ti) based SMAs to actively confine concrete members. Despite the proven effectiveness and wide commercial availability of Ni-Ti SMAs, however, their high cost remains a major obstacle for applications in real structural engineering projects. In this study, the shape memory effect of a new, much more economical iron-based SMA (Fe-SMA) is characterized and the compressive behavior of concrete confined with Fe-SMA strips is investigated. Tests showed the Fe-SMA strips used in this study are capable of developing high levels of recovery stress and can be easily formed into hoops to provide effective active and passive confining pressure to concrete members. Compared to concrete cylinders confined with conventional carbon fiber-reinforced polymer (CFRP) composites, Fe-SMA confinement yielded significantly higher compressive deformation capacity and residual strength. Overall, the compressive behavior of Fe-SMA confined concrete was comparable to that of Ni-Ti SMA confined concrete. This study clearly shows the potential for Fe-SMA as a robust and cost-effective strengthening solution for concrete structures and opens possibilities for more practical applications.

TiNi/Al 6061 형상기억 복합재료의 강도해석 모듈 개발 (Development of Strength Analysis Modules for TiNi/Al 6061 Shape Memory Alloy)

  • 이동화;박영철;박동성;이규창
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.692-696
    • /
    • 2001
  • Thermo-mechanical behavior and mechanical properties of intelligent polymer matrix composite with SMA fiber are experimentally studied. It is found that increments of compressive thermal strain is observed as the pre-strain and TiNi volume fraction increase. The smartness of the SMA is given due to the shape memory effect of the TiNi fiber which generates compressive residual stress in the matrix material when heated after being prestrained. In the paper, alloy is based on the general purpose commercial code ANSYS. And for the purpose of easy and fast user's analysis, it is developed the Graphical User Interface by using Tcl/Tk language.

  • PDF

형상기억효과를 가지는 전기방사된 폴리우레탄 부직포에 관한 연구 (Electrospinning of Polyurethane Block Copolymers with Shape Memory Effect)

  • Cha, Dong-Il;Kim, Hak-Yong;Jung, Yong-Chae;Cho, Jae-Whan;Chun, Byoung-Chul;Jung, Yong-Chan
    • 한국섬유공학회:학술대회논문집
    • /
    • 한국섬유공학회 2003년도 가을 학술발표회 논문집
    • /
    • pp.261-262
    • /
    • 2003
  • Shape memory polyurethane (PU) with soft and hard segments has been extensively researched since its discovery by Mitsubishi in 1988 [1]. Hard segments can be formed via hydrogen bonding and crystallization, function as physical crosslinks below melting point (Tm). The reversible phase transformation of the soft segment is responsible for the shape memory effect. (omitted)

  • PDF

Analysis of Optical Properties with Photopolymers for Holographic Application

  • Kim Nam;Hwang Eun-Seop;Shin Chang-Won
    • Journal of the Optical Society of Korea
    • /
    • 제10권1호
    • /
    • pp.1-10
    • /
    • 2006
  • Optical transparency and high diffraction efficiency are two essential factors for high performance of the photopolymer. Optical transparency mainly depends on the miscibility between polymer binder and photopolymerized polymer, while diffraction efficiency depends on the refractive index modulation between polymer binder and photopolymerized polymer. For most of organic materials, the large refractive index difference between two polymers accompanies large structural difference that leads to the poor miscibility and thus poor optical quality via light scattering. Therefore, it is difficult to design a high-performance photopolymer satisfying both requirements. In this work, first, we prepared a new phase-stable photopolymer (PMMA) with large refractive index modulation and investigated the optical properties. Our photopolymer is based on modified poly (methyl methacrylate) as a polymer binder, acryl amide as a photopolymerizable monomer, triethanolamine as initiator, and yellow eosin as a photosensitizer at 532 nm. Diffraction efficiency over 85% and optical transmittance over 90% were obtained for the photopolymer. Second, Organic-inorganic nanocomposite films were prepared by dispersing an aromatic methacrylic monomer and a photo- initiator in organic-inorganic hybrid sol-gel matrices. The film properties could be controlled by optimizing the content of an organically modified silica precursor (TSPEG) in the sol-gel matrices. The photopolymer film modified with the organic chain (TSPEG) showed high diffraction efficiency (> 90%) under an optimized condition. High diffraction efficiency could be ascribed to the fast diffusion and efficient polymerization of monomers under interference light to generate refractive index modulation. The TSPEG modified photopolymer film could be successfully used for holographic memory.

New Azo Polymers and Their Applications to High Density Optical Memory Devices

  • Han, Yang-Kyoo;Lee, Min-Jeong
    • 한국고분자학회:학술대회논문집
    • /
    • 한국고분자학회 2006년도 IUPAC International Symposium on Advanced Polymers for Emerging Technologies
    • /
    • pp.169-169
    • /
    • 2006
  • Novel liquid crystalline malonic ester monomers were synthesized from malonyl dichloride and mesogenic alcohols as a photoresponsive group. The monomers were polymerized with aliphatic or aromatic dibromides in the presence of sodium hydride to give 8 kinds of novel poly(malonic esters) with two symmetrical azobenzene groups. We found that the resulting polymer films could be used as rewritable optical data storage (or holographic image) media through a photoisomerization of azobenzene group by Ar laser irradiation. The sensitivity of data recording was dependent not only on the thickness of the polymeric thin film but also on the intensity of laser beam.

  • PDF

3D Nanotube Capacitor 구현을 위한 BLT Nanotube 제작 (Fabrication of BLT Nanotubes for 3D Nanotube Capacitor)

  • 서보익;;김상우;홍석경;양비룡
    • 한국세라믹학회지
    • /
    • 제43권4호
    • /
    • pp.220-223
    • /
    • 2006
  • BLT nanotubes were synthesized by using simple and convenient method template-wetting process. Porous alumina membranes were prepared by 2 step anodic oxidation as the template. To improve wetting properties and make low surface energy, BLT solution was mixed with polymer. Polymer was removed completely during annealing. After completely etching the template in 30 wt% KOH solution, we demonstrate that BLT nanotubes with a diameter of 200 nm can be fabricated. Grain growth process of BLT nanotubes during baking, and furnace annealing was examined by FE-SEM and XRD.

강유전정 액정 디스플레이의 배향을 위한 액정성 고분자 (Liquid Crystalline Polymer for the Alignment of Ferroelectric Liquid Crystal Display)

  • 진성호;전영재;이종천;김강
    • 한국재료학회지
    • /
    • 제10권5호
    • /
    • pp.350-353
    • /
    • 2000
  • 강유전성 액정 분자 배향을 위해 열방성 고분자 액정물질을 배향막으로 사용하고 그표면 morphology를 AFM(Atomic Forced Microscope)으로 관찰한 결과 잘 배향된 sample cell에서도 microgroove 구조가 나타나지 않았음을 관찰하였다. 잘 배향된 sample cell 23:1의 contrast ratio를 보이면서 memory 효과를 나타내었다. 또한 20V의 AC field로 안정화시키자 전형적인 stripe-shaped 무늬가 나타났다.

  • PDF

AFM을 이용한 데이터 저장 소자 연구 (A Study of Data Storage Device Utilizing AFM technology)

  • 최정환;박근형
    • 한국전기전자재료학회논문지
    • /
    • 제19권5호
    • /
    • pp.411-416
    • /
    • 2006
  • A new reading technology for the ultra-high density data storage device utilizing AFM technology was proposed and its experimental results were discussed in this paper. For the experiments, an about $2{\mu}m$ thick conductive polymer layer was spin-coated on the heavily doped n-type Si wafer and an about $0.1{\mu}m$ thick PMMA layer was also been spin-coated on it. After then, the $5{\times}5$ memory way was fabricated by making indents on the surface of the wafer with the heated AFM tip, and the data reading was performed by scanning the surface with the tip biased at 10 V and the measuring the current flowing out at the end of the tip. The experimental results clearly showed that the new data reading technology worked superbly. The current measured was about 0.92 pA at the cell with the indent, and it was not only below 0.31 pA at the cell without the indent, but also at the cell where the indent was erased.