• Title/Summary/Keyword: Polymer heat sinks

Search Result 4, Processing Time 0.017 seconds

Computational Investigation of the Thermal Performances of Polymer Heat Sinks Passively-Cooled by Seawater for Thermoelectric Waste Heat Recovery (열전폐열회수를 위해 수동적으로 해수냉각되는 폴리머 히트싱크 열성능의 수치적 연구)

  • Kim, Kyoung Joon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.4
    • /
    • pp.432-436
    • /
    • 2015
  • This study computationally explored the thermal performance of passively-cooled polymer heat sinks utilizing seawater. Polymer heat sinks are proposed as cooling modules of the cold sides of thermoelectric generators for waste heat recovery. 3-D Computational Fluid Dynamics (CFD) modelling was conducted for a detailed numerical study. Polyphenylene sulfide (PPS) and pyrolytic graphite (PG) were selected for the base materials of polymer heat sinks. The computational study evaluated the performance of the PPS and PG heat sinks at various fin numbers and fin thicknesses. Their performances were compared with those of aluminum (Al) and titanium (Ti) heat sinks. The study results showed that the thermal performance of the PG heat sink was 3~4 times better than that of the Ti heat sink. This might be due mainly to the better heat spreading of the PG heat sink than the Ti heat sink. The effect of the number of fins on the performance of the PG heat sink was dissimilar to the cases of the PPS and Ti heat sinks. This result can be explained by the interrelationships among heat spreading, surface area enhancement, and fluidic resistance incorporating with an increase in the number of fins.

Characteristics of LED Lighting Device Using Heat Sinks of 7.5 W CMP-PLA (7.5 W CMP-PLA 방열판을 적용한 LED 등기구 특성)

  • Kim, Young-Gon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.12
    • /
    • pp.920-923
    • /
    • 2013
  • In this paper, the characteristics of a carbon nanotube composite heat sink proposed to replace the advanced Al heat sinks for LED lighting devices were studied. Proposed CMP-PLA heat sink was made by mixing 20~70 wt% carbon nanotube, 20~70 wt% bio-degradable polymer of melt-blended PLA (poly lactic acid) and PBS (poly butylene succinate) and PLA nucleating agents composed of the mixture of soybean oil and biotites, at $150{\sim}220^{\circ}C$ with 1,000~1,500 rpm. Optical and electric characteristics of 7.5 W LED lighting devices using heat sinks with such prepared CMP-PLA were investigated. And, the properties of the heat, which was not released from the CMP-PLA type heat sinks, was also investigated. The color temperature of LED lighting devices using the CMP-PLA heat sinks was 5,956 K, which is x= 0.32 and y= 0.34 in the XY chromaticity, and the color rendering index was 75. The luminous flux and the luminous efficiency of LED lighting devices using the CMP-PLA heat sinks was 540.6 lm and 72.68 lm/W respectively. Measured initial temperature of the heat sinks was $27^{\circ}C$, and their temperature increased as time to be saturated at $52^{\circ}C$ after an hour.

Comparative Analysis of Thermal Dissipation Properties to Heat Sink of Thermal Conductive Polymer and Aluminum Material (열전도성 고분자와 Al재질의 Heat Sink 방열 성능 비교 분석)

  • Choi, Doo-Ho;Choi, Won-Ho;Jo, Ju-Ung;Park, Dae-Hee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.2
    • /
    • pp.137-141
    • /
    • 2015
  • The purpose of this study is examining thermal dissipation materials for the lighting and radiate efficiency improvement of 8W LED and confirming the properness of the thermal dissipation materials for LED heat sink. Solid Works flow simulation on 8W class COB was done based on the material characteristics of thermal conductive polymer materials. According to the result of simulation, Al had better thermal dissipation performance than PET. Highest temperature was $7.6^{\circ}C$ higher while lowest temperature was $7.8^{\circ}C$ lower. The test on the heat sinks made by the materials, highest temperature was $4.1^{\circ}C$ higher and lowest temperature was $3.9^{\circ}C$ lower. It is possible to confirm that Al heat sink has better thermal dissipation efficiency because it has better dispersion of heat generated at junction temperature and less heat cohesion. The weight of PET heat sink was reduced than Al heat sink by 46.9% by the density difference between Al and PET. In conclusion, thermal dissipation performance of thermal conductive polymer is lower than Al material however, it is possible to lighting heat sink because thermal conductive polymer has better formability, has lower specific weight and enables various design options.

Effect of CaF2 Addition on the Crystallinity of Hexagonal Boron Nitride Nanoparticles (육방정 질화붕소 나노입자의 결정성에 미치는 불화칼슘 첨가의 영향)

  • Jung, Jae-Yong;Kim, Yang-Do;Kim, Young-Kuk
    • Korean Journal of Metals and Materials
    • /
    • v.56 no.12
    • /
    • pp.915-920
    • /
    • 2018
  • With the development of modern microelectronics technologies, the power density of electronic devices is rapidly increasing, due to the miniaturization or integration of device elements which operate at high frequency, high power conditions. Resulting thermal problems are known to cause power leakage, device failure and deteriorated performance. To relieve heat accumulation at the interface between chips and heat sinks, thermal interface materials (TIMs) must provide efficient heat transport in the through-plane direction. We report on the enhanced thermal conduction of $Al_2O_3-based$ polymer composites, fabricated by the surface wetting and texturing of thermally conductive hexagonal boron nitride(h-BN) nanoplatelets with large anisotropy in morphology and physical properties. The thermally conductive polymer composites were prepared with hybrid fillers of $Al_2O_3$ macro beads and surface modified h-BN nanoplatelets. Hexagonal boron nitride (h-BN) has high thermal conductivity and is one of the most suitable materials for thermally conductive polymer composites, which protect electronic devices by efficient heat dissipation. In this study, we synthesized hexagonal boron nitride nanoparticles by the pyrolysis of cost effective precursors, boric acid and melamine. Through pyrolysis at $900^{\circ}C$ and subsequent annealing at $1500^{\circ}C$, hexagonal boron nitride nanoparticles with diameters of ca. 50nm were synthesized. We demonstrate that the addition of a small amount of calcium fluoride ($CaF_2$) during the preparation of the melamine borate adduct significantly enhanced the crystallinity of the h-BN and assisted the growth of nanoplatelets up to 100nm in diameters. The addition of a small amount of h-BN enhanced the thermal conductivity of the $Al_2O_3-based$ polymer composites, from 1.45W/mK to 2.33 W/mK.