DOI QR코드

DOI QR Code

육방정 질화붕소 나노입자의 결정성에 미치는 불화칼슘 첨가의 영향

Effect of CaF2 Addition on the Crystallinity of Hexagonal Boron Nitride Nanoparticles

  • 정재용 (재료연구소분말/세라믹연구본부) ;
  • 김양도 (부산대학교재료공학과) ;
  • 김영국 (재료연구소분말/세라믹연구본부)
  • Jung, Jae-Yong (Powder&Ceramics Division, Korea Institute of Materials Science) ;
  • Kim, Yang-Do (Department of Material Engineering, Pusan National University) ;
  • Kim, Young-Kuk (Powder&Ceramics Division, Korea Institute of Materials Science)
  • 투고 : 2018.08.29
  • 심사 : 2018.10.18
  • 발행 : 2018.12.05

초록

With the development of modern microelectronics technologies, the power density of electronic devices is rapidly increasing, due to the miniaturization or integration of device elements which operate at high frequency, high power conditions. Resulting thermal problems are known to cause power leakage, device failure and deteriorated performance. To relieve heat accumulation at the interface between chips and heat sinks, thermal interface materials (TIMs) must provide efficient heat transport in the through-plane direction. We report on the enhanced thermal conduction of $Al_2O_3-based$ polymer composites, fabricated by the surface wetting and texturing of thermally conductive hexagonal boron nitride(h-BN) nanoplatelets with large anisotropy in morphology and physical properties. The thermally conductive polymer composites were prepared with hybrid fillers of $Al_2O_3$ macro beads and surface modified h-BN nanoplatelets. Hexagonal boron nitride (h-BN) has high thermal conductivity and is one of the most suitable materials for thermally conductive polymer composites, which protect electronic devices by efficient heat dissipation. In this study, we synthesized hexagonal boron nitride nanoparticles by the pyrolysis of cost effective precursors, boric acid and melamine. Through pyrolysis at $900^{\circ}C$ and subsequent annealing at $1500^{\circ}C$, hexagonal boron nitride nanoparticles with diameters of ca. 50nm were synthesized. We demonstrate that the addition of a small amount of calcium fluoride ($CaF_2$) during the preparation of the melamine borate adduct significantly enhanced the crystallinity of the h-BN and assisted the growth of nanoplatelets up to 100nm in diameters. The addition of a small amount of h-BN enhanced the thermal conductivity of the $Al_2O_3-based$ polymer composites, from 1.45W/mK to 2.33 W/mK.

키워드

과제정보

연구 과제 주관 기관 : 재료연구소

참고문헌

  1. L. Sim, S. Ramanan, H. Ismail, K. Seetharamu, and T. Goh, Thermo. Acta. 430, 155 (2005). https://doi.org/10.1016/j.tca.2004.12.024
  2. I. Krupa, I. Novak, and I. Chodak, Synth. Met. 145, 245 (2004). https://doi.org/10.1016/j.synthmet.2004.05.007
  3. W. Zhou, S. Qi, Q. An, H. Zhao, and N. Liu, Mater. Res. Bull. 42, 1863 (2007). https://doi.org/10.1016/j.materresbull.2006.11.047
  4. M. Zimmer, X. Fan, J. Bao, R. Liang, B. Wang, C. Zhang, and J. Brooks, Mater. Sci. Appl. 3, 131 (2012).
  5. D. H. Kim, M. H. Kim, J. H. Lee, J. Lim, K. Kim, B. Lee, J. M. Park, and S. R. Kim, Mater. Sci. Forum. 544, 483 (2007).
  6. W. Zhou, S. Qi, H. Li, and S. Shao, Thermo. Acta 452, 36 (2007). https://doi.org/10.1016/j.tca.2006.10.018
  7. H. Zeng, C. Zhi, Z. Zhang, X. Wei, X. Wang, W. Guo, Y. Bando, and D. Golberg, Nano Lett. 10, 5049 (2010). https://doi.org/10.1021/nl103251m
  8. T. Terao, Y. Bando, M. Mitome, C. Zhi, C. Tang, and D. Golberg, J. Phys. Chem. C 113, 13605 (2009). https://doi.org/10.1021/jp903159s
  9. G. Postole, A. Gervasini, C. Guimon, A. Auroux, and B. Bonnetot, J. Phys. Chem. B 110, 12572 (2006).
  10. M. Ekrem, O. S. Sahin, S. E. Karabulut, and A. Avci, J. Compos. Mater. 52, 1557 (2018). https://doi.org/10.1177/0021998317726147
  11. J. Koo and C. Kleinstreuer, J. Nanopart. Res. 6, 577 (2004). https://doi.org/10.1007/s11051-004-3170-5
  12. M. Das and S. Ghatak, Bull. Mater. Sci. 35, 99 (2012). https://doi.org/10.1007/s12034-011-0248-4
  13. S. Hirano, T. Yogo, S. Asada, and S. Naka, J. Am. Ceram. Soc. 72, 66 (1989). https://doi.org/10.1111/j.1151-2916.1989.tb05955.x
  14. E. Shishonok, J. Steeds, A. Pysk, E. Mosunov, O. Abdullaev, A. Yakunin, and D. Zhigunov, Powder Metall. Met. C. 50, 754 (2012). https://doi.org/10.1007/s11106-012-9386-5
  15. Y. Xiong, H. Wang, and Z. Fu, J. Eur. Ceram. Soc. 33, 2199 (2013). https://doi.org/10.1016/j.jeurceramsoc.2013.03.024
  16. A. Roy, A. Choudhury, and C. N. R. Rao, J. Mol. Struct. 613, 61 (2002). https://doi.org/10.1016/S0022-2860(02)00128-X
  17. S. Alkoy, C. Toy, T. Gönül, and A. Tekin, J. Euro. Ceram. Soc. 17, 1415 (1997). https://doi.org/10.1016/S0955-2219(97)00040-X
  18. H. Lee, H. M. Lee, and D. K. Kim, J. Am. Ceram. Soc 97, 805 (2014). https://doi.org/10.1111/jace.12685
  19. J. Y. Jung, Y. D. Kim, P. W. Shin, and Y. K. Kim, J. Kor. Powder Metallurgy. Inst. 23, 414 (2016).
  20. L. Qiao, H. Zhou, and R. Fu, Ceram. Int. 29, 893 (2003). https://doi.org/10.1016/S0272-8842(03)00033-6
  21. Y. Xiong, H. Wang, and Z. Fu, J. Eur. Ceram. Soc. 33, 2199 (2013). https://doi.org/10.1016/j.jeurceramsoc.2013.03.024
  22. H. Tsuda and J. Arends, Adv. Dent. Res. 11, 539 (1997). https://doi.org/10.1177/08959374970110042301
  23. Y. Kim, J. Chung, J. Lee, Y. Baek, and P. Shin, Compos. Part A: Appl. Sci. Manuf. 98, 184 (2017). https://doi.org/10.1016/j.compositesa.2017.03.030
  24. J. Chung, J. Lee, Y. Baek, P. Shin, and Y. Kim, Compos. Part B: Eng. 136, 215 (2018). https://doi.org/10.1016/j.compositesb.2017.10.033
  25. P. Rutkowski, W. Piekarczyk, L. Stobierski, and G. Gorny, J. Therm. Anal. Calorim. 115, 461 (2014). https://doi.org/10.1007/s10973-013-3246-5
  26. T. Wang, M. Wang, L. Fu, Z. Duan, Y. Chen, X. Hou, Y. Wu, S. Li, L. Guo, and R. Kang, Sci. Rep. 8, 1557 (2018). https://doi.org/10.1038/s41598-018-19945-3
  27. P. Singla, N. Goel, and S. Singhal, Ceram. Int. 41, 10565 (2015). https://doi.org/10.1016/j.ceramint.2015.04.151
  28. S. Li, T. Yang, H. Zou, M. Liang, and Y. Chen, High Perform. Polym 29, 315 (2017). https://doi.org/10.1177/0954008316643766
  29. D. H. Cho, J. H. Nam, B. W. Lee, S. O. Yim, and I. M. Park, Met. Mater. Int. 22, 332 (2016). https://doi.org/10.1007/s12540-016-5454-6
  30. I.-J. Shon, Korean J. Met. Mater. 54, 893 (2016). https://doi.org/10.3365/KJMM.2016.54.12.893