Browse > Article
http://dx.doi.org/10.3365/KJMM.2018.56.12.915

Effect of CaF2 Addition on the Crystallinity of Hexagonal Boron Nitride Nanoparticles  

Jung, Jae-Yong (Powder&Ceramics Division, Korea Institute of Materials Science)
Kim, Yang-Do (Department of Material Engineering, Pusan National University)
Kim, Young-Kuk (Powder&Ceramics Division, Korea Institute of Materials Science)
Publication Information
Korean Journal of Metals and Materials / v.56, no.12, 2018 , pp. 915-920 More about this Journal
Abstract
With the development of modern microelectronics technologies, the power density of electronic devices is rapidly increasing, due to the miniaturization or integration of device elements which operate at high frequency, high power conditions. Resulting thermal problems are known to cause power leakage, device failure and deteriorated performance. To relieve heat accumulation at the interface between chips and heat sinks, thermal interface materials (TIMs) must provide efficient heat transport in the through-plane direction. We report on the enhanced thermal conduction of $Al_2O_3-based$ polymer composites, fabricated by the surface wetting and texturing of thermally conductive hexagonal boron nitride(h-BN) nanoplatelets with large anisotropy in morphology and physical properties. The thermally conductive polymer composites were prepared with hybrid fillers of $Al_2O_3$ macro beads and surface modified h-BN nanoplatelets. Hexagonal boron nitride (h-BN) has high thermal conductivity and is one of the most suitable materials for thermally conductive polymer composites, which protect electronic devices by efficient heat dissipation. In this study, we synthesized hexagonal boron nitride nanoparticles by the pyrolysis of cost effective precursors, boric acid and melamine. Through pyrolysis at $900^{\circ}C$ and subsequent annealing at $1500^{\circ}C$, hexagonal boron nitride nanoparticles with diameters of ca. 50nm were synthesized. We demonstrate that the addition of a small amount of calcium fluoride ($CaF_2$) during the preparation of the melamine borate adduct significantly enhanced the crystallinity of the h-BN and assisted the growth of nanoplatelets up to 100nm in diameters. The addition of a small amount of h-BN enhanced the thermal conductivity of the $Al_2O_3-based$ polymer composites, from 1.45W/mK to 2.33 W/mK.
Keywords
h-BN; nanoplatelets; synthesis; thermal conductivity; calcium fluoride;
Citations & Related Records
연도 인용수 순위
  • Reference
1 L. Sim, S. Ramanan, H. Ismail, K. Seetharamu, and T. Goh, Thermo. Acta. 430, 155 (2005).   DOI
2 I. Krupa, I. Novak, and I. Chodak, Synth. Met. 145, 245 (2004).   DOI
3 W. Zhou, S. Qi, Q. An, H. Zhao, and N. Liu, Mater. Res. Bull. 42, 1863 (2007).   DOI
4 M. Zimmer, X. Fan, J. Bao, R. Liang, B. Wang, C. Zhang, and J. Brooks, Mater. Sci. Appl. 3, 131 (2012).
5 D. H. Kim, M. H. Kim, J. H. Lee, J. Lim, K. Kim, B. Lee, J. M. Park, and S. R. Kim, Mater. Sci. Forum. 544, 483 (2007).
6 W. Zhou, S. Qi, H. Li, and S. Shao, Thermo. Acta 452, 36 (2007).   DOI
7 H. Zeng, C. Zhi, Z. Zhang, X. Wei, X. Wang, W. Guo, Y. Bando, and D. Golberg, Nano Lett. 10, 5049 (2010).   DOI
8 T. Terao, Y. Bando, M. Mitome, C. Zhi, C. Tang, and D. Golberg, J. Phys. Chem. C 113, 13605 (2009).   DOI
9 G. Postole, A. Gervasini, C. Guimon, A. Auroux, and B. Bonnetot, J. Phys. Chem. B 110, 12572 (2006).
10 M. Ekrem, O. S. Sahin, S. E. Karabulut, and A. Avci, J. Compos. Mater. 52, 1557 (2018).   DOI
11 J. Koo and C. Kleinstreuer, J. Nanopart. Res. 6, 577 (2004).   DOI
12 M. Das and S. Ghatak, Bull. Mater. Sci. 35, 99 (2012).   DOI
13 S. Hirano, T. Yogo, S. Asada, and S. Naka, J. Am. Ceram. Soc. 72, 66 (1989).   DOI
14 E. Shishonok, J. Steeds, A. Pysk, E. Mosunov, O. Abdullaev, A. Yakunin, and D. Zhigunov, Powder Metall. Met. C. 50, 754 (2012).   DOI
15 Y. Xiong, H. Wang, and Z. Fu, J. Eur. Ceram. Soc. 33, 2199 (2013).   DOI
16 A. Roy, A. Choudhury, and C. N. R. Rao, J. Mol. Struct. 613, 61 (2002).   DOI
17 L. Qiao, H. Zhou, and R. Fu, Ceram. Int. 29, 893 (2003).   DOI
18 S. Alkoy, C. Toy, T. Gönül, and A. Tekin, J. Euro. Ceram. Soc. 17, 1415 (1997).   DOI
19 H. Lee, H. M. Lee, and D. K. Kim, J. Am. Ceram. Soc 97, 805 (2014).   DOI
20 J. Y. Jung, Y. D. Kim, P. W. Shin, and Y. K. Kim, J. Kor. Powder Metallurgy. Inst. 23, 414 (2016).
21 Y. Xiong, H. Wang, and Z. Fu, J. Eur. Ceram. Soc. 33, 2199 (2013).   DOI
22 H. Tsuda and J. Arends, Adv. Dent. Res. 11, 539 (1997).   DOI
23 Y. Kim, J. Chung, J. Lee, Y. Baek, and P. Shin, Compos. Part A: Appl. Sci. Manuf. 98, 184 (2017).   DOI
24 J. Chung, J. Lee, Y. Baek, P. Shin, and Y. Kim, Compos. Part B: Eng. 136, 215 (2018).   DOI
25 P. Rutkowski, W. Piekarczyk, L. Stobierski, and G. Gorny, J. Therm. Anal. Calorim. 115, 461 (2014).   DOI
26 T. Wang, M. Wang, L. Fu, Z. Duan, Y. Chen, X. Hou, Y. Wu, S. Li, L. Guo, and R. Kang, Sci. Rep. 8, 1557 (2018).   DOI
27 P. Singla, N. Goel, and S. Singhal, Ceram. Int. 41, 10565 (2015).   DOI
28 S. Li, T. Yang, H. Zou, M. Liang, and Y. Chen, High Perform. Polym 29, 315 (2017).   DOI
29 D. H. Cho, J. H. Nam, B. W. Lee, S. O. Yim, and I. M. Park, Met. Mater. Int. 22, 332 (2016).   DOI
30 I.-J. Shon, Korean J. Met. Mater. 54, 893 (2016).   DOI