• Title/Summary/Keyword: Polymer grafting

Search Result 181, Processing Time 0.028 seconds

Preparation and Characterization of Grafted Maleic Anhydride onto Polypropylene by Reactive Extrusion (반응 압출을 통한 PP-g-MA 제조 및 특성평가)

  • Kang, Dong-Jin;Lee, Sung-Hyo;Pal, Kaushik;Park, Chan-Young;Zhang, Zhen Xiu;Bang, Dae-Suk;Kim, Jin-Kuk
    • Polymer(Korea)
    • /
    • v.33 no.4
    • /
    • pp.358-363
    • /
    • 2009
  • Maleic anhydride-grafted polypropylene has been widely used to improve the interfacial interaction between the components in PP/polar polymer blends and PP/filler composites and to maximize the physical properties and thermal properties. In this paper. the maleic anhydride (MAH)-grafted polypropylene (co-PP) was fabricated through reactive extrusion process with di-cumyl peroxide (DCP) as an initiator. The grafting degree of MAH depending on the contents of DCP and MAH was investigated by FT-IR spectra and chemical titration. The grafting degree increased with increasing MAH concentration and also showed maximum value at 0.06 wt% of DCP concentration. Melt flow index (MFI) of the grafted copolymer was increased with increasing the contents of MAH. The DSC and TGA analysis data indicate the melting temperature and thermal degradation of PP depending on the grafting degree of MAH.

Radiation Induced-Grafting of Acrylic Acid onto Polyvinyl Chloride Fibers

  • Park, Jae-Ho;Lee, Chong-Kwang
    • Nuclear Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.89-99
    • /
    • 1976
  • The grafting of acrylic acid in aqueous solution to polyvinyl chloride fibers tab been studied in the presence of ferrous, ferric, and cupric salts, The mutual irradiation technique was adopted using a Co-60 source or a Van do Graaff accelerator. The grafting and homopolymerization were suppressed by the cations. Particularly the grafting was suppressed by the cations in the following order of effectiveness : $Cu^{2+}$>$Fe^{2+}$>$Cu^{3+}$. The rate of grafting (in %/hr) was proportional to the 0.76th power of the dose rate over the range from 8.5f $10^3$ rad/hr to $1.4\times10^5$ rad/dr. The apparent activation energy for the grafting was determined to be 6.1 Kcal/mole between $25^{\circ}$ and $75^{\circ}C$ for the mixture of AA-HaO-$(CH_2Cl)_2$, containing Mohr's salt, $4\times10^{-3}$ mole/l. The increase of the grafting was observed when total dose and dose intensity were raised, or when ethylene dichloride as a swelling agent was saturated in the monomer mixture. The grafted polyvinyl chloride fibers showed considerable improvement in moisture regain, heat shrinkage, and melting properties, but tensile properties were not significantly affected by grafting.

  • PDF

Synthesis and Tribological Behavior of Nanocomposite Polymer Layers

  • Tsukruk, V.V.;Ahn, Hyo-Sok;Julthongpiput, D.;Kim, Doo-In
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.51-52
    • /
    • 2002
  • We report results on microtribological studies of chemically grafted nanoscale polymer layers of different architecture with thickness below 30 nm. We have fabricated the molecular lubrication coatings from elastomeric tri-block copolymers and tested two different designs of corresponding nanocomposite coatings. We observed a significant reduction of friction forces and an increase of the wear stability when a minute amount of oil was trapped within the grafted polymer layer. These polymer gel layers exhibited a very steady friction response and a small value of the coefficient of friction as compared to the initial polymer coating. A polymer 'triplex' coating has been formed by a multiple grafting technique. The unique design of this layer Includes a hard-soft-hard architecture with a compliant rubber interlayer mediating localized stresses transferred through the topmost hard layer. This architecture provides a non-linear mechanical response under a normal compression stress and allows additional dissipation of mechanical energy via the elastic rubber interlayer.

  • PDF

UV-Induced Graft Polymerization of Polypropylene-g-glycidyl methacrylate Membrane in the Vapor Phase

  • Hwang, Taek-Sung;Park, Jin-Won
    • Macromolecular Research
    • /
    • v.11 no.6
    • /
    • pp.495-500
    • /
    • 2003
  • UV-induced graft polymerization of glycidyl methacrylate (GMA) to a polypropylene (PP) membrane was carried out in the vapor phase with benzophenone (BP) as a photoinitiator. Attenuated total reflection Fourier transform infrared spectroscopy, atomic force microscopy (AFM), and scanning electron microscopy (SEM) were utilized to characterize the copolymer. The degree of grafting increased with increasing reaction time, increased UV irradiation source intensity, and increased immersion concentration of the BP solution. The optimum synthetic condition for the PP-g-GMA membrane was obtained with a reaction time of 2 hrs, a UV irradiation source intensity of 450 W, and an immersion concentration of the BP solution of 0.5 mol/L. The pure water flux decreased upon increasing the degree of grafting and increasing the amount of diethylamino functional group introduced. The analysis of AFM and SEM images shows that the graft chains and diethylamino groups of PP-g-GMA grew on the PP membrane surface, resulting in a change in surface morphology.

Improved Thermal Stability of PET Fabrics by Photografting of Methacryloxypropyltrimethoxysilane(MAPTMS) (Methacryloxypropyltrimethoxysilane(MAPTMS)의 광그라프트에 의한 PET직물의 열적 안정성 향상)

  • Jang, Jin-Ho;Son, Jung-A
    • Textile Coloration and Finishing
    • /
    • v.20 no.4
    • /
    • pp.1-7
    • /
    • 2008
  • Methacryloxypropyl trimethoxysilane (MAPTMS), a hybrid organic-inorganic monomer, was photografted onto PET fabric using benzophenone (BP) as a photoinitiator. It was found that a UV energy of 43.2J/$cm^2$ was required to optimally photograft the MAPTMS onto PET fabrics which was applied with an aqueous formulation of 10% MAPTMS, 20% BP and 0.5% N-Methyldiethanol amine (MDEA). The MDEA additive was efficient in reducing atmospheric oxygen inhibition of polymer radicals which eliminated compulsory nitrogen inerting. The surface grafting of PET fabrics was verified by fourier transform infrared spectroscopy (FT-IR) and scanning electron spectroscopy (SEM). The grafted PET fabrics with the hybrid monomer showed higher thermal stability due to the introduced silane component in the monomer as ascertained by higher char content at 800$^{\circ}C$, which increased to 14.5% for the 15.8% grafting compared to 8.2% for the untreated.

Performance of PEG on immobilization of zero valent metallic particles on PVDF membrane for nitrate removal

  • Chan, Yi Shee;Chan, Mieow Kee;Ngien, Su Kong;Chew, Sho Yin;Teng, Yong Kang
    • Membrane and Water Treatment
    • /
    • v.9 no.1
    • /
    • pp.1-7
    • /
    • 2018
  • The principal objective of this study is to investigate the effect of Polyethylene Glycol (PEG) crosslinking in Polyvinylidene Fluoride (PVDF) in immobilization of Fe and bimetallic Fe/Cu and Cu/Fe zero valent particles on the membrane and its efficiency on removal of nitrate in wastewater. PVDF/PEG polymer solution of three weight compositions was prepared to manipulate the viscosity of the polymer. PEG crosslinking was indirectly controlled by the viscosity of the polymer solution. In this study, PEG was used as a modifier of PVDF membrane as well as a cross-linker for the immobilization of the zero valent particles. The result demonstrates improvement in immobilization of metallic particles with the increase in crosslinking of PEG. Nitrate removal efficiency increases too.

Evaluation of Porous PLLA Scaffold for Chondrogenic Differentiation of Stem Cells

  • Jung, Hyun-Jung;Park, Kwi-Deok;Ahn, Kwang-Duk;Ahn, Dong-June;Han, Dong-Keun
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.268-268
    • /
    • 2006
  • Due to their multipotency, stem cells can differentiate into a variety of specialized cell types, such as chondrocytes, osteoblasts, myoblasts, and nerve cells. As an alternative to mature tissue cells, stem cells are of importance in tissue engineering and regenerative medicine. Since interactions between scaffold and cells play an important role in the tissue development in vitro, synthetic oligopeptides have been immobilized onto polymeric scaffolds to improve specific cell attachment and even to stimulate cell differentiation. In this study, chondrogenic differentiation of stem cells was evaluated using surface-modified PLLA scaffolds, i.e., either hydrophilic acrylic acid (AA)-grafted PLLA or RGD-immobilized one. Porous PLLA scaffolds were prepared using a gas foaming method, followed by plasma treatment and subsequent grafting of AA to introduce a hydrophilicity (PLLA-PAA). This was further processed to fix RGD peptide to make an RGD-immobilized scaffold (PLLA-PAA-RGD). Stem cells were seeded at $1{\times}10^{6}$ cells per scaffold and the cell-PLLA constructs were cultured for up to 4 weeks in the chondrogenic medium. Using these surface-modified scaffolds, adhesion, proliferation, and chondrogenic differentiation of stem cells were evaluated. The surface of PLLA scaffolds turned hydrophilic (water contact angle, 45 degrees) with both plasma treatment and AA grafting. The hydrophilicity of RGD-immobilized surface was not significantly altered. Cell proliferation rate on the either PLLA-PAA or PLLA-PAA-RGD surface was obviously improved, especially with the RGD-immobilized one as compared to the control PLLA one. Chondrogenic differentiation was clearly identified with Safranin O staining of GAG in the AA- or RGD-grafted PLLA substrates. This study demonstrated that modified polymer surfaces may provide better environment for chondrogenesis of stem cells.

  • PDF

Studies on the Synthesis of Aminated PP-g-GMA Fibrous ion Exchanger by E-beam Pre-irradiation and Their Properties of Selective Adsorption for $NO_{3} ^{-}$ (E-beam 전조사에 의한 $NO_{3} ^{-}$ 선택 흡착용 아민화 PP-g-GMA 섬유 이온교환체의 합성과 그 특성에 관한 연구)

  • 황택성;이선아;이면주
    • Polymer(Korea)
    • /
    • v.26 no.2
    • /
    • pp.153-159
    • /
    • 2002
  • In order to remove $NO_3;^-$ ion from ground-water, fibrous ion -exchangers, APP-g-GMA, were synthesized by GMA grafting onto PP trunk polymer with E-beam accelerator for pre-irradiation. Their degrees of grafting and amination yield increased up to $60^{\circ}C$ and showed maximum values as 133%, 88%, respectively. And their swelling ratio and ion exchange capacity at the maximum values are 86%, 2.5 meq/g, respectively which was higher than commercial ion-exchangers such as IMAC HP555 and Amberlite IRA 400. Optimum adsorption condition of $NO_3;^-$ ion was measured at pH 5~6 and -Cl form of APP-g-GMA containing trimethylammonium group showed the highest adsorption capacity.

Fabrication of the Superhydrophobic Surface Inspired from Lotus-Effect (연꽃잎을 모사한 초소수성 표면 제작)

  • Jung, Dae-Hwan;Lim, Hyun-Eui;Noh, Jeong-Hyun;Kim, Wan-Doo
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.409-414
    • /
    • 2007
  • Wettability of solid surfaces with liquids is governed by the chemical properties and the microstructure of the surfaces. We report on the preparation of liquid-repellent surfaces using surface-attached monolayers of perfluorinated polymer molecules on porous silica substrates. A covalent attachment of the polymer molecules to the substrate is achieved by generation of the polymer chains through starting a surface-initiated radical-chain polymerization of a fluorinated monomer. To this, self-assembled monolayers of azo initiators are attached to silica substrates, which are used to kick off the polymerization reaction in situ. The growth of the fluorinated polymer films and the characterization of the obtained surfaces by surface plasmon spectroscopy, XPS, and contact angle measurements is described. It is shown that perfluorinated polymer films can be grown with controlled thicknesses on flat and even on porous silica surfaces, essentially without changing the surface roughness. The combination of the low surface energy coating and the surface porosity allows generation of materials which are both water and oil repellent.

  • PDF

Studies on the Graft Polymerization of Polyethyleneglycol Monomethacrylate onto Chitosan and Drug(Vitamin B12) Permeation Behavior (키토산과 폴리에틸렌글리콜 모노메타크릴레이트의 그라프트중합과 약물(Vitamin B12)방출에 관한 연구)

  • Chung, Joo-Eun;Chung, Byung-Ok;Chang, Byung-Kwon;Choi, Kyu-Suk
    • Applied Chemistry for Engineering
    • /
    • v.5 no.3
    • /
    • pp.524-536
    • /
    • 1994
  • Chitosan is known to be a good biocompatible natural polymer. Polyethyleneglycol monomethacrylates(PEGM) were grafted onto chitosan and their reaction conditions and properties of the graft polymers obtained were estimated. Using ceric ammonium nitrate(CAN) as the initiator, the optimum condition for graft polymerization was determined amount of the initiator and monomer concentrations and reaction time. Grafting yields such as total conversion, the percentage of grafting and the efficiency of grafting were calculated and examined the optimum reaction condition for high grafting yields. The percentage of grafting and total conversion were maximum at condition that the concentration of initiator was $4{\sim}5{\times}10^{-3}M$, the concentration of monomer was 0.5~0.6M, the reaction time was 2~3 hours and the reaction temperature was about $40^{\circ}C$. Thermal characteristics, solubility for chitosan solvents and inherent viscosity of synthesized graft copolymers were investigated. In high initiator concentration, characteristics of chitosan were greatly diminshed. In case of inherent viscosities, chitosan-g-PE-90 was 2.81 dl/g, chitosan-g-PE-200, 3.01dl/g and chitosan-g-PE-350, 4.93dl/g. And a tendency of viscosity increase depending on the length of ethylene oxide residue was confirmed. Degree of swelling, tensile strength, elongation of membrane prepared from graft copolymers were determined. Properties of graft copolymers were affected by percentage of grafting and length of ethylene oxides residue in polyethylene glycol monomethacrylates. Tensile strength, elongation and degree of swelling of graft copolymers were remarkably improved than chitosan. As percentage of grafting increased, the amount of drug permeation was also increased.

  • PDF