• Title/Summary/Keyword: Polymer flow

Search Result 753, Processing Time 0.024 seconds

Drag Reduction of Pipe Wall For Fluid Flow due to Injected Polymer Solution - II. Local Drag Reduction in Turbulent Flow- (고분자용액에 의한 유체수송관벽의 저항감소 -II. 난류흐름에서 국소저항감소-)

  • 추낙준;유경옥
    • Fire Science and Engineering
    • /
    • v.5 no.2
    • /
    • pp.11-20
    • /
    • 1991
  • Dilute polymer solutions were injected into turbulent pipe flow of a Newtonian fluid. The local drag reduction for injection of polymer solution at the pipe wall was larger than that at centerline. From the above result we may conclude that the polymer additives were found to influence the flow in the neighborhood of the wall. The effects of the injection apparatus on the local drag reduction are small compared to the drag-reducing effects. The extent of drag reduction increased with polymer concentration and injection flow rate, and the maximum drag reduction obtained were 47% for Polyox Coagulant and 35% for Separan AP-273. In respect to polymer degradation, the polyacrylamide showed better shear stability than the polyethyleneoxide and thus the former expected to have a sharper molecular weight distribution.

  • PDF

Experimental study on the flow characteristic by the co-polymer A6l1P additive in gas-liquid two-phase vertical up flow (합성 고분자물질 A611P를 첨가한 기액 2상 수직상향의 유동특성에 관한 실험적 연구)

  • 차경옥;김재근;양회준
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.4
    • /
    • pp.398-410
    • /
    • 1998
  • Two-phase flow phenomena are observed in many industrial facilities and make much importance of optimum design for nuclear power plant and the liquid transportation system. The particular flow pattern depends on the conditions of pressure, flow velocity, and channel geometry. However, the research on drag reduction in two-phase flow is not intensively investigated. Therefore, experimental investigations have been carried out to analyze the drag reduction and void fraction by polymer addition in the two-phase flow system. We find that the polymer solution changes the characteristic of two-phase flow. The peak position of local void friction moves from tile wall of the pipe to the center of the pipe when polymer concentration increase. And then we predict that it is closely related with the frau reduction.

  • PDF

A study on the drag reduction in a horizontal two phase flow (수평 2상유동에서 마찰저항감소에 관한 연구)

  • Cha, Gyeong-Ok;Kim, Jae-Geun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.4
    • /
    • pp.1472-1480
    • /
    • 1996
  • The phenomena of drag reduction using small quantities of a linear macromolecules has attracted the attention of experimental investigations. It is well known that drag reduction in single phase liquid flow is affected by polymer materials, molecular weight, polymer concentration, pipe diameter and flow velocity. But the research on drag reduction in two phase flow has not intensively investigated. Drag reduction can be applied to phase change system such as chemical reactor, pool and boiling flow, and to flow with cavitation which occurs pump impellers. The purpose of the present work is to evaluate the drag reduction by measuring pressure drop, mean liquid velocity, and turbulent intensity and determine the effects of polymer additives on drag reduction in horizontal two phase flow. Experimental results show higher drag reduction using co-polymer comparing with using polyacrylamide. Mean liquid velocities increase as adding more polymer, and turbulent intensities decrease as the distance for the wall in inversed.

Numerical Simulation: Effects of Gas Flow and Heat Transfer on Polymer Deposition in a Plasma Dry Etcher

  • Joo, Junghoon
    • Applied Science and Convergence Technology
    • /
    • v.26 no.6
    • /
    • pp.184-188
    • /
    • 2017
  • Polymer deposition pattern on the ceramic lid surface is analyzed by numerical modeling. Assumption was made that is affected by gas flow pattern from the horizontal and vertical nozzles, temperature profile from the finger-like branches made of graphite and electrostatic potential effect. Calculated results showed gas flow dynamics is less relevant than two others. Temperature and electrostatic effects are likely determining the polymer deposition pattern based on our numerical simulation results.

The Characteristics of Convective Heat Transfer in Non Boiling Vertical Downard Flow (비비등 수직 하향 유동의 대류 열전달 특성)

  • Lee, D.S.;Kim, J.G.;Yang, H.J.;Oh, Y.K.;Cha, K.O.
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.118-123
    • /
    • 2000
  • This experimental study was conducted to figure out the characteristics of convective heat transfer in non boiling vertical downward flow with polymer additives. This experiment was studied in 26mm diameter, 800mm heating length and $1{\times}10^5W/m^2$ heat flux. The polymer concentration ranged from 0PPM to 500PPM with corresponding from Reynolds number $3.3{\times}10^4$ to $6.8{\times}10^4$ in non boiling vertical downward flow. Experimental results show that the characteristics of convective heat transfer was a strong function of polymer concentration and it has decreased with increasing the polymer concentration in non boiling vertical downward flow.

  • PDF

Axisymmetric analysis of blood flow for a floating type polymer artificial heart valve (부유식 폴리머 인공심장 밸브의 축대칭 혈류 해석)

  • Seong H. C.;Jung K. S.;Kim K. H.;Ko H. J.;Park C. Y.;Min B. G.;Shim E. B.
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.703-704
    • /
    • 2002
  • The two major problems related to the blood flow in a floating type polymer valve are thrombus formation and hemolysis. It is well known that the shear stress in the fluid and flow separation around the valve are blamed for such disastrous phenomena. In this viewpoint, through study of the flow field around the valve is imperative to improve design of the valve. The aim of this study is to investigate the fluid flow around a floating type polymer valve. The numerical method employed in this study is the finite element software called ADINA. Incompressible viscous flow is assumed for blood using the assumption of Newtonian fluid. In this study, two prominent features of the axisymmetric flow around the floating type polymer valve are observed: jet-like flows observed near the gap between the conduit and the valve, and recirculating flow downstream of the valve. We also provided a detailed description of shear stress field according to the variation of flow conditions. The shear stress in fluid has its maximum value near the gap between the valve and the conduit.

  • PDF

A Study on the Drag Reduction by Shear-thinning Fluid in Turbulent Flow Fields (난류유동장에서 Shear - thinning 유체에 의한 마찰저항 감소에 관한 연구)

  • 차경옥;김재근;오율권
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.21 no.2
    • /
    • pp.126-135
    • /
    • 1997
  • Drag reduction in polymer solutions is the phenomenon where by extremely dilute solutions of high molecular weight polymers exhibit frictional resistance to flow much lower than the pure solvent. This effect, largely unexplained as yet, has attracted the attention of polymer scientists and fluid flow specialists. Although applications are beginning to appear, the principle interest to data has been in attempting to relate the effect to the fluid mechanics of turbulent flow. Drag reduction in two phase flow can be applied to the transport of crude oil, phase change system such as chemical reactor, and pool and boiling flow. But the research on drag reduction in two phase flow is not intensively investigated. Therefore, experimental investigations have been carried out to analyze the drag reduction produced by polymer addition in the single phase and two phase flow system. The objectives of the proposed investigation are primarily in identifying and developing high performance polymer additives for fluid transportations with the benefits of turbulent drag. Also we want to is to evaluate the drag reduction in horizontal flow by measuring pressure drop and mean velocity. Experimental results show higher drag reduction using co - polymer(A611P) then using polyacrylamide (PAAM) and faster degradation using PAAM than using A611P under the same superficial velocity.

  • PDF

Experimental Study on the Efficient Control of Heat of Lc Distance Transport for Two- Phase Fluid (2상류의 장거리 수송시 효율적인 열관리에 관한 실험적 연구)

  • Kim, J.H.;Kim, J.G.;Oh, Y.K.;Cha, K.O.
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.119-124
    • /
    • 2001
  • This experimental study was conducted to figure out the characteristics of convective heat transfer non boiling vertical downward flow with polymer additives. This experiment was studied in diameter, 800mm heating length and $1{\times}10^5 W/m^2$ heat flux. The polymer concentration ranged 0ppm to 500ppm with corresponding from superficial liquid velocity 1.25m/s to 2.5m/s in non bo vertical up and downward flow. Experimental results show that the characteristics of convective transfer was a strong function of polymer concentration and it has decreased with increasing polymer concentration in non boiling up and vertical downward flow.

  • PDF

Maximum drag reduction in turbulent channel flow by polymer additives (난류 채널 유동에서 폴리머 첨가제에 의한 최대 항력감소)

  • Min Taegee;Choi Haecheon;Yoo Jung Yul
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.475-478
    • /
    • 2002
  • Maximum drag reduction (MDR) in turbulent channel flow by polymer additives is studied by direct numerical simulation. An Oldroyd-B model is adopted to express the polymer stress because it is believed that MDR is closely related to the elasticity of the polymeric liquids. The Reynolds number based on the bulk velocity and the channel height is 40000. MDR in the present study is $44{\%}$ and this is in a good agreement with the Virk's asymptote. Turbulence statistics are also in good agreements with the experimental observation. In the 'large drag reduction', the decrease of turbulent kinetic energy is compensated by the increase of energy transfer from the polymer to the flow. Therefore, MDR is a dynamic equilibrium state of the energy transfer between the polymer and the flow.

  • PDF

A Study on the Drag Reduction of Shear Thinning Fluid with Vertical upward Turbulent Flow (전단박화유체의 수직상향 난류유동시 저항감소에 관한 연구)

  • Cha, Kyong-Ok;Kim, Bong-gag;Kim, Jea-Geun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.12
    • /
    • pp.1647-1656
    • /
    • 1998
  • The drag reduction is the phenomenon that occurs only when the shear stress from the wall of pipe is beyond the critical point. The drag reduction increase as the molecular weight, concentration of the polymer and Reynolds number increase, but it is limited by Virk's maximum drag reduction asymptote. Because of the strong shear force for the polymer on the turbulent flow, the molecular weight and the drag reduction do not decrease. Such mechanical degradation of the polymer occurs in all polymer solvent systems. This paper is to identify and develop high performance polymer additives for fluid transportations with the benefits of turbulent drag reduction. In addition, drag reduction in vertical flow by measuring the pressure drop and local void fraction on vertical-up flow of close system is evaluated.