• 제목/요약/키워드: Polymer electrolyte membrane Fuel cell

Search Result 467, Processing Time 0.025 seconds

Numerical Simulation on Cooling Plates in a Fuel Cell (연료전지 냉각판의 냉각 특성에 대한 수치해석적 연구)

  • Kim, Yoon-Ho;Lee, Yong-Taek;Lee, Kyu-Jung;Kim, Yong-Chan;Choi, Jong-Min;Ko, Jang-Myoun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.1
    • /
    • pp.86-93
    • /
    • 2007
  • The PEM (polymer electrolyte membrane) fuel cell is one of the promising fuel cell systems as a new small power generating device for automobiles and buildings. The optimal design of cooling plates installed between MEA (membrane electrode assembly) is very important to achieve high performance and reliability of the PEMFC because it is very sensitive to temperature variations. In this study, six types of cooling plate models for the PEMFC including basic serpentine and parallel shapes were designed and their cooling performances were analyzed by using three-dimensional fluid dynamics with commercial software. The model 3 designed by revising the basic serpentine model represented the best cooling performance among them in the aspect of uniformity of temperature distribution and thermal reliability, The serpentine models showed higher pressure drop than the parallel models due to a higher flow rate.

Performance of Fuel Cell with PEMFC Fabricated under Different Pressure (고분자 전해질 연료전지 성능에 미치는 MEA 가압제조 공정 조건의 영향)

  • Lee, Ki-Seong;Sim, Sooman;Kim, Dongmin
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.1
    • /
    • pp.70-75
    • /
    • 2013
  • It has fabricated membrane electrode assemblies (MEA) for proton exchange membrane fuel cell by hot-pressing method. The hot-pressing was used for the fabrication of MEA which is composed of commercial platinum electrode on carbon paper. The performance of MEA was studied with different fabrication conditions of temperature, pressure and torque. As the temperature increased, the performance of MEA was increased. and started to decrease l after arrived at the maximum performance of MEA. This is related with good contact between electrode and polymer electrolyte membrane at high temperature and microstructural change at much higher temperature. Similarly, as the pressure increased, the performance of the MEA increased up to highest values and start to decrease. According to the our results, the maximal performance of the MEA was at the temperature of $140^{\circ}C$ and the pressure of $1.5{\times}10^3$ kPa. The optimal torque to assemble the single stack was 3.2 N m.

Recent Developments of Metal-N-C Catalysts Toward Oxygen Reduction Reaction for Anion Exchange Membrane Fuel Cell: A Review

  • Jong Gyeong Kim;Youngin Cho;Chanho Pak
    • Journal of Electrochemical Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.207-219
    • /
    • 2024
  • Metal-N-C (MNC) catalysts have been anticipated as promising candidates for oxygen reduction reaction (ORR) to achieve low-cost polymer electrolyte membrane fuel cells. The structure of the M-Nx moiety enabled a high catalytic activity that was not observed in previously reported transition metal nanoparticle-based catalysts. Despite progress in non-precious metal catalysts, the low density of active sites of MNCs, which resulted in lower single-cell performance than Pt/C, needs to be resolved for practical application. This review focused on the recent studies and methodologies aimed to overcome these limitations and develop an inexpensive catalyst with excellent activity and durability in an alkaline environment. It included the possibility of non-precious metals as active materials for ORR catalysts, starting from Co phthalocyanine as ORR catalyst and the development of methodologies (e.g., metal-coordinated N-containing polymers, metal-organic frameworks) to form active sites, M-Nx moieties. Thereafter, the motivation, procedures, and progress of the latest research on the design of catalyst morphology for improved mass transport ability and active site engineering that allowed the promoted ORR kinetics were discussed.

The Operation of Polymer Electrolyte Membrane Fuel Cell using Hydrogen Produced from the Combined Methanol Reforming Process

  • Park, Sang Sun;Jeon, Yukwon;Park, Jong-Man;Kim, Hyeseon;Choi, Sung Won;Kim, Hasuck;Shul, Yong-Gun
    • Journal of Electrochemical Science and Technology
    • /
    • v.7 no.2
    • /
    • pp.146-152
    • /
    • 2016
  • A combined system with PEMFC and reformer is introduced and optimized for the real use of this kind of system in the future. The hydrogen source to operate the PEMFC system is methanol, which needs two parts of methanol reforming reaction and preferential oxidation (PROX) for the hydrogen fuel process in the combined operation PEMFC system. With the optimized methanol steam reforming condition, we tested PROX reactions in various operation temperature from 170 to 270 ℃ to investigate CO concentration data in the reformed gases. Using these different CO concentration, PEMFC performances are achieved at the combined system. Pt/C and Ru promoted Pt/C were catalysts were used for the anode to compare the stability in CO contained gases. The alloy catalyst of PtRu/C shows higher performance and better resistance to CO than the Pt/C at even high CO amount of 200 ppm, indicating a promotion not only to the activity but also to the CO tolerance. Furthermore, in a system point of view, there is a fluctuation in the PEMFC operation due to the unstable fuel supply. Therefore, we also modified the methanol reforming by a scaled up reactor and pressurization to produce steady operation of PEMFC. The optimized system with the methanol reformer and PEMFC shows a stable performance for a long time, which is providing a valuable data for the PEMFC commercialization.

Performance Evaluation on MEA with Double Layered Catalyst (이중구조 촉매층으로 구성된 MEA의 성능 평가)

  • Kim, Hong-Gun;Kwac, Lee-Ku;Kang, Sung-Soo;Kang, Young-Woo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.55-58
    • /
    • 2006
  • An experimental study is performed to evaluate the performance and the efficiency by humidifying MEA and by making the double-layered catalyst in a fuel cell system which is taken into account the physical and thermal concept. An electrical output produced by PEMFC(Polymer Exchange Membrane Fuel Cell) is measured to assess the performance of the stack and the efficiency is also evaluated according to the different situation in which is placed with and without the humidification of MEA(Membrane Electrolyte Assembly). Subsequently, It is found that the measured values of MEA voltage and current are influenced by the MEA temperature, humidification, and the double-layered catalyst which gives more enhanced values to apply for electric units.

  • PDF

Preparation and Characterization of PVA/PAM Electrolyte Membranes Containing Silica Compounds for Direct Methanol Fuel Cell Application (실리카 화합물을 함유한 PVA/PAM 전해질 막의 제조 및 특성과 직접메탄올 연료전지로의 응용)

  • Yoon, Seok-Won;Kim, Dae-Hoon;Lee, Byung-Seong;Lee, Bo-Sung;Moon, Go-Young;Byun, Hong-Sik;Rhim, Ji-Won
    • Polymer(Korea)
    • /
    • v.34 no.1
    • /
    • pp.45-51
    • /
    • 2010
  • This study focuses on the investigation of the possibility of the crosslinked poly (vinyl alcohol) membranes with both poly (acrylic acid-co-maleic acid) (PAM) and 3-(trihydroxysilyl)-1-propane-sulfonic acid (THS-PSA) for the direct methanol fuel cell application. In order to characterize the prepared membranes, the water content, the thermal gravimetric analysis, the ion exchange capacity, the ion conductivity and the methanol permeability measurements were carried out and then compared with the existing Nafion 115 membrane. The ion exchange capacity of the resulting membranes showed 1.6~1.8 meq./g membrane which was improved than Nafion 115, 0.91 meq./g membrane. In the case of the proton conductivity, the THS-PSA introduced membranes gave more excellent $0.042{\sim}0.056\;S{\cdot}cm^{-1}$ than Nafion 115, $0.024\;S{\cdot}cm^{-1}$. On the other hand, the methanol permeability was increased more than Nafion 115 for all the range of THA-PSA concentration.

Preparation and Characterization of the Impregnation to Porous Membranes with PVA/PSSA-MA for Fuel Cell Applications (연료전지 응용을 위한 다공성막에 친수성 고분자의 함침을 통한 고내구성 이온교환막의 제조 및 특성 연구)

  • Lee, Bo-Sung;Jung, Sun-Kyoung;Rhim, Ji-Won
    • Polymer(Korea)
    • /
    • v.35 no.4
    • /
    • pp.296-301
    • /
    • 2011
  • This study focuses on the investigation of the impregnation of poly (vinyl alcohol) (PVA) crosslinked with poly(styrene sulfonic acid-co-maleic acid) (PSSA-MA) to porous polyethylene membrane for the fuel cell application. The membranes were characterized by the measurements of the water content, contact angle, FTIR spectra, thermal gravimetric analysis, ion exchange capacity, proton conductivity, methanol permeability and elastic modulus. The existence of hydrophilic moieties in the impregnated membranes was confirmed by contact angle and FTIR measurements. The impregnated PVA/PSSAMA(90:10) membrane exhibited a higher ion exchange capacity (1.2 meq./g dry membrane) than Nafion membrane (0.91 meq./g dry membrane). Through the elastic modulus measurement, the dimensional stability of the resulting membranes was expected to increase higher than the polyethylene membranes. The methanol crossover and water content decreased even if the PSSA-MA content increased due to the reduction of the free volume.

Real-time and Power Hardware-in-the-loop Simulation of PEM Fuel Cell Stack System

  • Jung, Jee-Hoon
    • Journal of Power Electronics
    • /
    • v.11 no.2
    • /
    • pp.202-210
    • /
    • 2011
  • Polymer electrolyte membrane (PEM) fuel cell is one of the popular renewable energy sources and widely used in commercial medium power areas from portable electronic devices to electric vehicles. In addition, the increased integration of the PEM fuel cell with power electronics, dynamic loads, and control systems requires accurate electrical models and simulation methods to emulate their electrical behaviors. Advancement in parallel computation techniques, various real-time simulation tools, and smart power hardware have allowed the prototyping of novel apparatus to be investigated in a virtual system under a wide range of realistic conditions repeatedly, safely, and economically. This paper builds up advancements of optimized model constructions for a fuel cell stack system on a real-time simulator in the view points of improving dynamic model accuracy and boosting computation speed. In addition, several considerations for a power hardware-in-the-loop (PHIL) simulation are provided to electrically emulate the PEM fuel cell stack system with power facilities. The effectiveness of the proposed PHIL simulation method developed on Opal RT's RT-Lab Matlab/Simulink based real-time engineering simulator and a programmable power supply is verified using experimental results of the proposed PHIL simulation system with a Ballard Nexa fuel cell stack.

The Effects of the Inclination on the Performance of dead-end operating PEM Fuel Cell (고분자 연료전지의 데드엔드 운전 시 기울임에 따른 성능 변화)

  • Jeong, Jee Hoon;Kho, Back Kyun;Han, In-Su;Shin, Hyun Khil;Hur, Tae Uk;Cho, Sung Baek
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.89.2-89.2
    • /
    • 2011
  • In automotive applicatons or water vehicles, the polymer electrolyte membrane fuel cell(PEMFC) stack is keep moving while their operation. Especially the inclination environment can take a effect to fuel cell stack perfromance, because this condition can cause a bad effect to water exhaust of fuel cell stack. In this study, a large scale stack(over 100kW power) is inclined upto 30 degree in lengthwise and crosswise using stack lift equipment. And the stack is operated in 10~100% load. No significant change has appeared in crosswise inclined condition and lenthwise low angle. But in lenthwise large angle tilting condition, the fuel cell performance has significantly decreased. And this performance decrease is aggravated in low load. An active water exhaust device is applied to the stack to prevent the performance decrease. And in lenthwise large angle tilting condition, this device cause a good effect to fuel cell stack performance.

  • PDF

Preparation and Characterization of SPAES/SPVdF-co-HFP Blending Membranes for Polymer Electrolyte Membrane Fuel Cells (고분자 전해질 연료전지용 술폰화된 폴리(아릴렌 이써 설폰)/SPVdF-co-HFP 브렌딩 멤브레인의 제조 및 특성 분석)

  • PARK, CHUL JIN;KIM, AE RHAN;YOO, DONG JIN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.3
    • /
    • pp.227-236
    • /
    • 2019
  • In this work, preparation and characterizations of hybrid membranes containing sulfonated poly(arylene ether sulfone) (SPES) and sulfonated poly(vinylidene fluoride-co-hexafluoropropylene) (SPVdF-co-HFP) (20, 30 or 40 wt%) were carried out. The structure of hybrid membranes was confirmed using X-ray diffraction (XRD) analysis and the Fourier transform infrared (FT-IR) spectroscopy. The prepared SPAES/SPVdF-30 membrane exhibits higher ionic conductivity of 68.9 mS/cm at $90^{\circ}C$ and 100% RH. Besides, the other studies showed that the hybrid membrane has good oxidation stability, thermal stability, and mechanical stability. Thus, we believe that the prepared hybrid membrane is suitable for the development of membranes for fuel cell applications.