• Title/Summary/Keyword: Polymer electrolyte

Search Result 1,001, Processing Time 0.037 seconds

Electrochemical Properties of Activated Carbon Capacitor Adopting a Proton-conducting Hydrogel Polymer Electrolyte (수소이온전도성 고분자 겔전해질을 적용한 활성탄소계 전기이중층 캐패시터의 전기화학적 특성)

  • Latifatu, Mohammed;Kim, Kwang Man;Kim, Yong Joo;Ko, Jang Myoun
    • Elastomers and Composites
    • /
    • v.47 no.4
    • /
    • pp.292-296
    • /
    • 2012
  • An electric double-layer capacitor (ELDC) of activated carbon electrode is prepared using a proton-conducting hydrogel polymer electrolyte, which is composed of poly(vinyl alcohol), silicotungstic acid, $H_3PO_4$, and deionized water. A solid film by evaporating the hydrogel polymer electrolyte is also prepared for comparison. The hydrogel polymer electrolyte also acts as a separator with the thickness of about $80{\mu}m$ and the room-temperature ionic conductivity of $10^{-2}S\;cm^{-1}$. The EDLC containing the symmetric electrodes of activated carbon shows the specific capacitance of $58F\;g^{-1}$ at $100mV\;s^{-1}$ with a good cycle life, implying that the hydrogel polymer electrolyte is very promising for use in EDLCs.

Poly(vinyl alcohol)-based Polymer Electrolyte Membrane for Solid-state Supercapacitor (고체 슈퍼캐퍼시터를 위한 폴리비닐알콜 고분자 전해질막)

  • Lee, Jae Hun;Park, Cheol Hun;Park, Min Su;Kim, Jong Hak
    • Membrane Journal
    • /
    • v.29 no.1
    • /
    • pp.30-36
    • /
    • 2019
  • In this study, we reported a solid-state supercapacitor consisting of titanium nitride (TiN) nanofiber and poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT-PSS) conducting polymer electrode and poly(vinyl alcohol) (PVA)-based polymer electrolyte membrane. The TiN nanofiber was selected as electrode materials due to high electron conductivity and 2-dimensional structure which is beneficial for scaffold effect. PEDOT-PSS is suitable for organic/inorganic composites due to good redox reaction with hydrogen ions in electrolyte and good dispersion in solution. By synergetic effect of TiN nanofiber and PEDOT-PSS, the PEDOT-PSS/TiN electrode showed higher surface area than the flat Ti foil substrate. The PVA-based polymer electrolyte membrane could prevent leakage and explosion problem of conventional liquid electrolyte and possess high specific capacitance due to the fast ion diffusion of small $H^+$ ions. The specific capacitance of PEDOT-PSS/TiN supercapacitor reached 75 F/g, which was much higher than that of conventional carbon-based supercapacitors.

Research of Cross-linked Hydrocarbon based Polymer Electrolyte Membranes for Polymer Electrolyte Membrane Fuel Cell Applications (고분자 전해질 막 연료전지 응용을 위한 탄화수소계 기반 가교 전해질 막의 연구동향)

  • Ko, Hansol;Kim, Mijeong;Nam, Sang Yong;Kim, Kihyun
    • Membrane Journal
    • /
    • v.30 no.6
    • /
    • pp.395-408
    • /
    • 2020
  • Polymer electrolyte membrane fuel cells (PEMFCs) have gained much attention as eco-friendly energy conversion devices without emission of environmental pollutant. Polymer electrolyte membrane (PEM) that can transfer proton from anode to cathode and also prevent fuel cross-over has been regarded as a key component of PEMFCs. Although perfluorinated polymer membranes such as Nafion® were already commercialized in PEMFCs, their high cost and toxic byproduct generated by degradation have still limited the wide spread of PEMFCs. To overcome these issues, development of hydrocarbon based PEMs have been studied. Incorporation of cross-linked structure into the hydrocarbon based PEM system has been reported to fabricate the PEMs showing both high proton conductivity and outstanding physicochemical stability. This study focused on the various cross-linking strategies to the preparation of cross-linked PEMs based on hydrocarbon polymers with ion conducting groups for application in PEMFCs.

PROPERTY CHANGES OF POLYMER ELECTROLYTE MEMBRANES WITH FREEZE/THAW CYCLES (동결/해동 조건에서 고분자막의 특성 변화 연구)

  • Park Gu-Gon;Lim Nam-Yun;Sohn Young-Jun;Park Jin-Soo;Lee Won-Yong;Kim Sae-Hoon;Lim Tae-Won;Kim Chang-Soo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.281-283
    • /
    • 2005
  • Water management in polymer electrolyte membrane fuel cells(PEMFCs) is one of the most challenging issues. Freeze start-up in the automotive applications is also important research topic in the PEMFC field. Transportation of proton and separation of reactant gases are main roles of polymer electrolyte membranes. It has been known that water in the membrane conducts as a vehicle for the proton transportation. At sub-zero temperature, the frozen water blocks the access of reactant gases to the active sites of electrode as well as occurs the physical destruction of fuel cell structures. In this study, property changes of electrolyte membranes in the freeze conditions $(at\;-25^{\circ}C)$ were investigated. For the various amount of water contained membranes, the property changes, especially for the proton conductivity, were observed after several times of freeze/thaw$(-25\~80^{\circ}C)$ cycle.

  • PDF

Perfluorinated Sulfonic Acid Ionomer-PTFE Pore-filling Membranes for Polymer Electrolyte Membrane Fuel Cells (고분자전해질연료전지용 과불소계 술폰화 이오노머-PTFE 강화막)

  • Kang, Seong Eun;Lee, Chang Hyun
    • Membrane Journal
    • /
    • v.25 no.2
    • /
    • pp.171-179
    • /
    • 2015
  • Perfluorinated sulfonic acid ionomers (PFSAs) have been widely as solid electrolyte materials for polymer electrolyte membrane fuel cells, since they exhibit excellent chemical durability under their harsh application conditions as well as good proton conductivity. Even PFSA materials, however, suffer from physical failures associated with repeated membrane swelling and deswelling, resulting in fairly reduced electrochemical lifetime. In this study, pore-filling membranes are prepared by impregnating a Nafion ionomer into the pore of a porous PTFE support film and their fundamental characteristics are evaluated. The developed pore-filling membranes exhibit extremely high proton conductivity of about $0.5S\;cm^{-1}@90^{\circ}C$ in liquid water.

Characterization of DNA/Poly(ethylene imine) Electrolyte Membranes

  • Park, Jin-Kyoung;Won, Jong-Ok;Kim, Chan-Kyung
    • Macromolecular Research
    • /
    • v.15 no.6
    • /
    • pp.581-586
    • /
    • 2007
  • Cast DNA/polyethyleneimine (PEI) blend membranes containing different amounts of DNA were prepared using acid-base interaction and characterized with the aim of understanding the polymer electrolyte membrane properties. Two different molecular weights of PEI were used to provide the mechanical strength, while DNA, a polyelectrolyte, was used for the proton transport channel. Proton conductivity was observed for the DNA/PEI membrane and reached approximately $3.0{\times}10^{-3}S/cm$ for a DNA loading of 16 wt% at $80^{\circ}C$. The proton transport phenomena of the DNA/PEI complexes were investigated in terms of the complexation energy using the density functional theory method. In the case of DNA/PEI, a cisoid-type complex was more favorable for both the formation of the complex and the dissociation of hydrogen from the phosphate. Since the main requirement for proton transport in the polymer matrix is to dissociate the hydrogen from its ionic sites, this suggests the significant role played by the basicity of the matrix.

Polymer Electrolyte Membranes and their Applications to Membranes, Fuel Cells and Solar Cells

  • Kang, Yong-Soo
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2003.07a
    • /
    • pp.29-32
    • /
    • 2003
  • Polymer electrolyte membranes are developed for the applications to facilitated transport membranes, fuel cells and solar cells. The polymer electrolyte membranes containing silver salt show the remarkably high separation performance for olefin/paraffin mixture in the solid state; the propylene permeance is 45 GPU and the ideal selectivity of propylene/propane is 15,000. For fuel cell membranes, the effects of the presence and size of the proton transport channels on the proton conductivity and methanol permeability were investigated. The cell performance for dye-sensitized solar cells employing polymer electrolytes are measured under light illumination. The overall energy conversion efficiency reaches 5.44 % at 10 ㎽/$\textrm{cm}^2$, to our knowledge the highest value ever reported in the polymer electrolytes.

  • PDF

A Study on the Characteristics of Lithium-Ion Polymer Battery with Composition of Crosslink-Type Gel Polymer Electrolyte (가교형 겔폴리머전해질 조성에 따른 리튬이온폴리머전지의 특성에 관한 연구)

  • Kim Hyun-Soo;Moon Seong-In;Kim Sang-Pil
    • Journal of the Korean Electrochemical Society
    • /
    • v.7 no.4
    • /
    • pp.189-193
    • /
    • 2004
  • Lithium secondary battery with gel polymer electrolyte, which was composed of POAGA and TEGDMA, was prepared and its cell performances were evaluated. Collation time decreased with increasing the contents of the monomer in the POAGA-based gel polymer electrolyte. The polymer electrolyte was stable up to 4.5V electro-chemically and its ionic conductivity was $5.2\times10^{-3}Scm^{-1}$ at room temperature. The lithium-ion polymer battery with $3.0wt\%$ curable monomer and $1.0wt\%$ monomer showed rate-capability, low-temperature performance and cycleability.

Preparation and Characterization of Advanced Organic Polymer - Inorganic Composite Gel Electrolyte for Dye-sensitized Solar Cells (염료 감응 태양전지를 위한 고급 유기 고분자 - 무기 복합 겔형 전해질의 제조와 특성분석)

  • Akhtar, M. Shaheer;Park, Jung-Guen;Kim, Ui-Yeon;Lee, Hyun-Choel;Yang, O-Bong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.350-354
    • /
    • 2009
  • In this work, polymer - inorganic composites have prepared using polymer such as polyethylene glycol (PEG)/poly (methyl methacrylate, PMMA) and inorganic nanofillers materials such as TiO2 nanotubes (TiNTs)/carbon nanotubes (CNTs). The extensive structural, morphological and ionic properties revealed that the high surface area and tubular feature of nanofillers improved the interaction and cross-linking to polymer matrix which is significantly enhanced the ionic conductivity and electrical properties of composite electrolytes. Comparably high conversion efficiency ~4.5% has been observed by using the newly prepared PEG-TiNTs composite solid electrolyte as compared with PMMA-CNTs electrolyte based DSSCs (~3%). The detailed comparative properties would be discussed in term of their structural, morphology, ionic and photovoltaic properties.

  • PDF

Linear and network structures of polymer electrolyte based on phosphate and polyether copolymers

  • Kim, Jun-Young;Kim, Seong-Hun
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 1998.10a
    • /
    • pp.232-235
    • /
    • 1998
  • ion conducting polymers have been extensively investigated because of their potential application as an electrolyte in solid state batteries [1]. Among the polymer electrolytes, solid polymer electrolytes (SPEs) composed of ion conducting polymer and alkali metal salt have many advantages such as high ionic conductivity, high energy density and light weight. This made them suitable replacement for liquid electrolytes. (omitted)

  • PDF