• Title/Summary/Keyword: Polymer composite

Search Result 2,135, Processing Time 0.04 seconds

Magnetic and Temperature-Sensitive Composite Polymer Particles and Adsorption Behavior of Emulsifiers and Trypsin

  • Ahmad, Hasan;Rahman, M.Abdur;Miah, M.A. Jalil;Tauer, Klaus
    • Macromolecular Research
    • /
    • v.16 no.7
    • /
    • pp.637-643
    • /
    • 2008
  • A combination of magnetic and temperature-responsive properties in the same polymer composites is expected to increase their potential applications in the biomedical field. Accordingly, micron-sized magnetite/polystyrene/poly(2-dimethylaminoethyl methacrylate-ethyleneglycol dimethacrylate), which are abbreviated as $Fe_3O_4$/PS/P (DM-EGDM) composite polymer particles, were prepared by the seeded copolymerization of DM and EGDM in the presence of magnetite/polystyrene ($Fe_3O_4$/PS) particles. $Fe_3O_4$/PS/P(DM-EGDM) composite particles with magnetic properties showed a temperature-sensitive phase transition at approximately $31^{\circ}C$. The adsorption behavior of the low molecular weight emulsifiers and trypsin (TR) as biomolecules were examined on $Fe_3O_4$/PS/P(DM-EGDM) composite polymer particles at different temperatures. The native conformation of TR was followed by measuring the specific activity under various adsorption conditions. The activity of the adsorbed TR on composite polymer particles was higher than those of the tree TR and TR adsorbed on $Fe_3O_4$/PS particles.

Study on gamma radiation attenuation and non-ionizing shielding effectiveness of niobium-reinforced novel polymer composite

  • Akman, Ferdi.;Ogul, H.;Ozkan, I.;Kacal, M.R.;Agar, O.;Polat, H.;Dilsiz, K.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.1
    • /
    • pp.283-292
    • /
    • 2022
  • Advanced radiation applications have been widely used and extended to many fields. As a result of this fact, choosing an appropriate shielding material based on the radiation application has become vital. In this regard, the integration of elements into polymer composites has been investigated and contributed to the quantity and quality of radiation shielding materials. This study reports photon attenuation parameters and electromagnetic shielding effectiveness of a novel polymer composite prepared with a matrix reinforced with three different proportions (5, 10, and 15 wt%) of niobium content. Addition of Nb dopant improves both photon attenuation and electromagnetic shielding effectiveness for the investigated composites. Therefore, Nb(15%) polymer composite with highest concentration has been found to be the best absorber for ionizing and non-ionizing radiations. Consequently, the performed analyzes provide evidences that the prepared Nb-reinforced polymer composite could be effectively used as photon radiation attenuator and electromagnetic shielding material.

Preparation of Amine-epoxy Adducts(AEA)/Thin Multiwalled Carbon Nanotubes (TWCNTs) Composite Particles using Dry Processes

  • Jung, Hyun-Taek;Cho, Young-Min;Kim, Tae-Ho;Kim, Tae-Ann;Park, Min
    • Carbon letters
    • /
    • v.11 no.2
    • /
    • pp.107-111
    • /
    • 2010
  • We prepared the amine epoxy adducts (AEA)/thin multiwalled carbon nanotubes (TWCNTs) composite particles using nonsolvent based methods including dry mechano-chemical bonding(MCB) process and supercritical fluid (SCF) process. The resulting TWCNTs/AEA composite particles have been used as curing agents for urethane modified bispheol A type epoxy resin. The thermal, thermomechanical properties of the epoxy resins cured with TWCNTs/AEA composite particles were measured by DMA and the dispersion of CNT was characterized by SEM. Because of high degree of CNT dispersion, thermal and mechanical properties of the epoxy resin cured with TWCNTs/AEA composite particles prepared by SCF process are better than those cured with mechano-chemically prepared TWCNTs/AEA composite particles.

Design of an Intelligent Polymer-Matrix-Composite Using Shape Memory Alloy (형상기억합금을 이용한 지능형 고분자 복합재료의 설계)

  • Jeong, Tae-Heon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.10
    • /
    • pp.1609-1618
    • /
    • 1997
  • Thermo-mechanical behaviors of polymer matrix composite(PMC) with continuous TiNi fiber are studied using theoretical analysis with 1-D analytical model and numerical analysis with 2-D multi-fiber finite element(FE) model. It is found that both compressive stress in matrix and tensile stress in TiNi fiber are the source of strengthening mechanisms and thermo-mechanical coupling. Thermal expansion of continuous TiNi fiber reinforced PMC has been compared with various mechanical behaviors as a function of fiber volume fraction, degree of pre-strain and modulus ratio between TiNi fiber and polymer matrix. Based on the concept of so-called shape memory composite(SMC) with a permanent shape memory effect, the critical modulus ratio is determined to obtain a smart composite with no or minimum thermal deformation. The critical modulus ratio should be a major factor for design and manufacturing of SMC.

Improvement of the mechanical performance and dyeing ability of bamboo fiber by atmospheric pressure air plasma treatment

  • Hoa, Ta Phuong;Chuong, Bui;Hung, Dang Viet;Tien, Nguyen Dung;Khanh, Vu Thi Homg
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2009.03a
    • /
    • pp.14-20
    • /
    • 2009
  • Atmospheric pressure air plasma was applied for treatment of different kinds of natural bamboo fiber to improve their mechanical properties and surface characteristics, which are suitable for adhesion and dyeing. The tensile strength and Young modulus of bamboo fiber were significantly improved; SEM and AFM study show that the surface of fiber became cleaner and rougher after plasma treatment. Plasma treatment caused the cracking, removing of the protective skin of alkali-untreated fiber and etching to form a cleaner and rougher surface. The dyeability of both groups of bamboo fiber which are used for composite and textile purposes is significantly enhanced after treatment.

  • PDF

Flexural Properties of Glass Fiber Reinforced Polymer Concrete Composite Panel (리브를 갖는 유리섬유 보강 폴리머 콘크리트 복합패널의 휨 특성)

  • Kim, Soo-Bo;Yeon, Kyu-Seok;Yoo, Neung-Hwan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.6
    • /
    • pp.37-45
    • /
    • 2004
  • In this study, twelve different glass fiber reinforced polymer concrete composite panel specimens with various rib heights and tensile side and reinforced side thickness were produced, and the flexural tests were conducted to figure out the effect of The height and thickness influencing on the flexural properties of composite panel. Test results of the study are presented. Especially, a prediction equation of the ultimate moment based on the strength design method agrees well with the test results, and it is thought to be useful for the corresponding design of cross-section according to various spans as the glass fiber reinforced polymer concrete composite panel is applied for a permanent mold.

Nanofiltration of Electrolytes with Charged Composite Membranes

  • Choi, J.H.;Yeom, C.K.;Lee, J.M.;Suh, D.S.
    • Membrane Journal
    • /
    • v.13 no.1
    • /
    • pp.29-36
    • /
    • 2003
  • A characterization of the permeation and separation using single salt solution was carried out with charged composite membranes. Various charged composite membranes were fabricated by blending an ionic polymer with a nonionic polymer in different ratios. In this study, sodium alginate, chitosan and poly(vinyl alcohol) were employed as anionic, cationic and nonionic polymers, respectively. The permeation and separation behaviors of the aqueous salt solutions have been investigated through the charged composite membranes with various charge densities. As the content of the ionic polymer increased in the membrane, the hydrophilicity of the membrane increased, and pure water flux and the solution flux increased correspondingly, indicating that the permeation performance through the membrane is determined mainly by its hydrophilicity. Electrostatic interaction between the charged membrane and ionic solute molecules, that is, Donnan exclusion, was observed to be attributed to salt rejection to a greater extent, and molecular sieve mechanism was effective for the separation of salts under a similar electrostatic circumstance of solutes.

Preparation and Properties of Polymer PTC Composites for Process Safety (공정안전용 Polymer PTC 소재의 제조 및 특성)

  • 강영구;조명호
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.3
    • /
    • pp.101-108
    • /
    • 2003
  • Polymeric positive temperature coefficient(PTC) composites have been prepared by incorporating carbon black(CB) into high density polyethylene(HDPE), polyphenylene sulfide(PPS) and polybutylene terephthalate(PBT) matrices. A PTC effect was observed in the composite, caused by the large thermal expansion due to He consecutive melting of HDPE, PPS and PBT crystallites. This theory is based upon the premise that the PTC phenomenon is due to a critical separation distance between carbon particles in the polymer matrix at the higher temperature. The influence of PTC characteristics of the PPS/CB composite can be explained by DSC result. HDPE, one of prepared composition, exhibit the higher performance PTC behavior that decreaseing of negative temperature coefficient(NTC) effect and improved reproducibility by chemically crosslinking. Also, PBT/CB and PPS/CB composites exhibit the higher PTC peack temperature than HDPE/CB PTC composite, individually $200^{\circ}C$ and $230^{\circ}C$. These PTC composite put to good use in a number of safety application, such as self$.$controlled heater, over-current protectors, auto resettable switch, high temperature proctection sensor, etc.

Core-Shell Polymerization with Hydrophilic Polymer Cores

  • Park, Jong-Myung
    • Macromolecular Research
    • /
    • v.9 no.1
    • /
    • pp.51-65
    • /
    • 2001
  • Two-stage emulsion polymerizations of hydrophobic monomers on hydrophilic seed polymer particles were carried out to make core-shell composite particles. It was found that the loci of polymerization in the second stage were the surface layer of the hydrophilic seed latex particles, and that it has resulted in the formation of either eccentric core-shell particles with the core exposed to the aqueous phase or aggregated nonspherical composite particles with the shell attached on the seed surface as many small separated particles. The driving force of these phenomena is related to the gain in free energy of the system in going from the hydrophobic polymer-water interface to hydrophilic polymer-water interface. Thermodynamic analysis of the present polymerization system, which was based on spreading coefficients, supported the likely occurrence of such nonspherical particles due to the combined effects of interfacial free energies and phase separation between the two polymer phases. A hypothetical pathway was proposed to prepare hydrophilic core-hydrophobic shell composite latex particles, which is based on the concept of opposing driving and resistance forces for the phase migration. It was found that the viscosity of the monomer-swollen polymer phase played important role in the formation of particle morphology.

  • PDF

Enhancing Mechanical and Electrical Performance through Polymer Blending: A Study on PVA-PDDA Blended Films for Triboelectric Energy Harvesting

  • Nebiyou Tadesse Debele;Alemtsehay Tesfay Reda;Yong Tae Park
    • Composites Research
    • /
    • v.37 no.2
    • /
    • pp.139-142
    • /
    • 2024
  • This study explores the impact of polymer blending on the mechanical properties and triboelectric energy harvesting capability of composite polymers. A multifunctional free-standing polymer blend composed of poly(vinyl alcohol) (PVA) and poly(diallyldimethylammonium chloride) (PDDA) was fabricated using a polymer casting method. Stress-strain analysis of the polymer blend revealed an enhanced stretchability of 308.4% with excellent transparency. Furthermore, triboelectric analysis revealed dynamic energy harvesting capabilities with impressive electrical voltage and current output of 50 V and 5 μA. These results represent a significant improvement compared to individual PVA and PDDA polymers and highlight the potential of polymer blending to enhance both mechanical and electrical properties for energy harvesting applications.