• 제목/요약/키워드: Polymer catalyst

검색결과 513건 처리시간 0.023초

A Study on the Ester Interchange Reaction of Dimethyl Naphthalate with Ethylene Glycol (Dimethyl Naphthalate와 Ethylene Glycol의 에스테르 교환반응에 관한 연구)

  • Sho, Soon-Yong;Cheong, Seong-Ihl
    • Polymer(Korea)
    • /
    • 제25권1호
    • /
    • pp.25-32
    • /
    • 2001
  • The kinetics of ester interchange reaction of dimethyl naphthalate(DMN) with ethylene glycol(EG) has been studied in the range of 180-200 $^{\circ}C$ using zinc and manganese catalysts. The reaction was performed in a semibatch reactor under nonisothermal condition and the degree of reaction was calculated from experimental data of methanol removal rate and reaction temperature. As a reaction model, both the functional group model and the molecular species model were applied and analysed. In case of zinc catalyst, the ratio of reaction rate of methyl hydroxyethyl naphthalate(MHEN) with EG on that of DMN with EG is about 1.4, whereas in case of manganese catalyst the ratio is about 4.3, which implies that the reaction rate is quite dependent on the type of catalyst. In case of zinc catalyst, the reaction order of catalyst concentration on either DMN or MHEN and EG is less than 1, whereas in case of manganese catalyst, the reaction order is larger than 1. The activation energy for zinc and manganese catalyst, irrespective of the type of molecular species, e.g., DMN and MHEN, were found to be 25000 and 28750 cal/mol, respectively. As a result of comparing two reaction model, the molecular species model fits well for the experimental data.

  • PDF

Development of Click Chemistry in Polymerization and Applications of Click Polymer

  • Karim, Md. Anwarul
    • Rubber Technology
    • /
    • 제13권1호
    • /
    • pp.1-9
    • /
    • 2012
  • Click chemistry had enjoyed a wealthy decade after it was introduced by K.B.Sharpless and his co-worker on 2001. Since there is no optimized method for synthesis of click polymer, therefore, this paper introduced three click reaction methods such as catalyst, non-catalyst and azide-end capping for fluorene-based functional click polymers. The obtained polymers have reasonable molecular weight with narrow PDI. The polymers are thermally stable and almost emitted blue light emission. The synthesized fluorene-based functional click polymers were characterized to compare the effect of click reaction methods on polymer electro-optical properties as well as device performance on quasi-solid-state dye sensitized solar cells (DSSCs) applications. The DSSCs with configuration of $SnO_2:F/TiO_2/N719$ dye/quasi-solid-state electrolyte/Pt devices were fabricated using these click polymers as a solid-state electrolyte components. Among the devices, the catalyzed click polymer composed device exhibited a high power conversion efficiency of 4.62% under AM 1.5G illumination ($100mW/cm^2$).These click polymers are promising materials in device application and $Cu^I$-catalyst 1, 3-dipolar cycloaddition click reaction is an efficient synthetic methodology.

  • PDF

Polymer Supported Cyanide as an Efficient Catalyst in Benzoin Condensation: An Efficient Route to α-Hydroxy Carbonyl Compounds

  • Kiasat, Ali Reza;Badri, Rashid;Sayyahi, Soheil
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권5호
    • /
    • pp.1164-1166
    • /
    • 2009
  • Aromatic aldehydes are efficiently self-condensed into $\alpha$-hydroxy carbonyl compounds by polystyrene-supported ammonium cyanide as an excellent organocatalyst in C-C bond formation. The reaction proceeds in water under mild reaction conditions. The polymeric catalyst can be easily separated by filtration and reused several times without appreciable loss of activity.

Relation of Structural Features of Dinuclear Constrained Geometry Catalysts with Copolymerization Properties of Ethylene and 1-Hexene (이핵 CGC의 구조적인 특성과 에틸렌/1-헥센의 공중합 거동과의 관계)

  • Cao, Phan Thuy My;Nguyen, Thi Le Nhon;Nguyen, Thi Le Thanh;Noh, Seok-Kyun
    • Polymer(Korea)
    • /
    • 제35권6호
    • /
    • pp.505-512
    • /
    • 2011
  • Effects of structural features of 4 dinuclear constrained geometry catalysts having paraxylene derivative bridge (DCGC) on copolymerization of ethylene and 1-hexene were investigated. The bridges of three catalysts have para-xylene backbone with a different substituent at benzene ring. The substituents were hydrogen (Catalyst 1), isopropyl (Catalyst 2), n-hexyl (Catalyst 3) and 1-octyl (Catalyst 4). It was found that Catalyst 1 having hydrogen as a substituent exhibited the greatest activity among the four dinuclear CGCs. On the other hand, Catalyst 2 containing isopropyl as a substituent showed the smallest activity. Very interestingly, Catalyst 2 was able to produce about 6 times higher molecular weight polymer than Catalyst 3 and 4. Catalyst 3 and 4 having a long alkyl chain substituent revealed the biggest comonomer response to generate polyethylene copolymer containing more than 40% 1-hexene contents. These results suggest that the control of the substituent of para-xylene bridge of dinuclear CGC can provide a proper method to adjust the microstructure of polyethylene copolymers.

Ionomer Binder in Catalyst Layer for Polymer Electrolyte Membrane Fuel Cell and Water Electrolysis: An Updated Review (고분자 전해질 연료전지 및 수전해용 촉매층의 이오노머 바인더)

  • Park, Jong-Hyeok;Akter, Mahamuda;Kim, Beom-Seok;Jeong, Dahye;Lee, Minyoung;Shin, Jiyun;Park, Jin-Soo
    • Journal of the Korean Electrochemical Society
    • /
    • 제25권4호
    • /
    • pp.174-183
    • /
    • 2022
  • Polymer electrolyte fuel cells and water electrolysis are attracting attention in terms of high energy density and high purity hydrogen production. The catalyst layer for the polymer electrolyte fuel cell and water electrolysis is a porous electrode composed of a precious metal-based electrocatalyst and an ionomer binder. Among them, the ionomer binder plays an important role in the formation of a three-dimensional network for ion conduction in the catalyst layer and the formation of pores for the movement of materials required or generated for the electrode reaction. In terms of the use of commercial perfluorinated ionomers, the content of the ionomer, the physical properties of the ionomer, and the type of the dispersing solvent system greatly determine the performance and durability of the catalyst layer. Until now, many studies have been reported on the method of using an ionomer for the catalyst layer for polymer electrolyte fuel cells. This review summarizes the research results on the use of ionomer binders in the fuel cell aspect reported so far, and aims to provide useful information for the research on the ionomer binder for the catalyst layer, which is one of the key elements of polymer electrolyte water electrolysis to accelerate the hydrogen economy era.

Coordination Polymerization of Carbon Double Bond Catalyzed by Organometallic Compounds (유기금속화합물 촉매에 의한 탄소이중결합의 배위중합)

  • Lee Dong-ho
    • Polymer(Korea)
    • /
    • 제29권4호
    • /
    • pp.321-330
    • /
    • 2005
  • In 1990's the Korean polyolefin industry boomed up through the development of magnificient polymerization catalysts. To understand the general situation of polymerization catalyst R & D, the various experimental results had been summarized for the investigation of not only the supported Ziegler-Natta catalyst used presently in polyolefin industry but also the metallocene catalysts applied for the preparation of special grade of polyolefin. In addition, it had been shown that the new polymeric materials were prepared by new developed catalyst, and the polymer in-situ nanocomposites could be obtained with the application of catalyst heterogenization procedures.

An Improved Procedure for 2-amino-5-nitro-4,6-diarylcyclohex-1-ene-1,3,3-tricar Bonitriles; Carbonate on Polymer Support as Mild and Reusable Catalyst

  • Prasanna, T.S.R.;Raju, K. Mohana
    • Journal of the Korean Chemical Society
    • /
    • 제55권5호
    • /
    • pp.808-811
    • /
    • 2011
  • A new catalytic system has been developed in the synthesis of 2-amino-5-nitro-4,6-diarylcyclohex-1-ene-1,3,3-tricarbonitriles using carbonate on polymer support (Amberlyst A-26 $NaCO_3{^-}$). Short reaction time, simplicity of isolation, safe catalyst and high yields of product are the features.

Studies on the Characteristics of the Catalyst Layer of the PEMFC Electrode (고분자전해질용 연료전지의 전극 촉매중 특성에 관한 연구)

  • Sridhar, Parthasarathi;Ihm, Jae-Wook;Yu, Hyung-Kyun;Ryu, Ho-Jin
    • Journal of the Korean Electrochemical Society
    • /
    • 제6권1호
    • /
    • pp.65-67
    • /
    • 2003
  • The present paper highlights on the need to understand the correlation of the characteristics of the catalyst layer with the performance of the polymer electrolyte membrane fuel cell (PEMFC). This paper deals with the correlation of the platinum loading in the catalyst layer and the performance of the polymer electrolyte membrane fuel cell and also the correlation of the required hydrophilicity/hydrophobicity in the catalyst layer to get the optimum performance under given operating conditions.

Electrochemical Characteristics of Solid Polymer Electrode Fabricated with Low IrO2 Loading for Water Electrolysis

  • Ban, Hee-Jung;Kim, Min Young;Kim, Dahye;Lim, Jinsub;Kim, Tae Won;Jeong, Chaehwan;Kim, Yoong-Ahm;Kim, Ho-Sung
    • Journal of Electrochemical Science and Technology
    • /
    • 제10권1호
    • /
    • pp.22-28
    • /
    • 2019
  • To maximize the oxygen evolution reaction (OER) in the electrolysis of water, nano-grade $IrO_2$ powder with a low specific surface was prepared as a catalyst for a solid polymer electrolyte (SPE) system, and a membrane electrode assembly (MEA) was prepared with a catalyst loading as low as $2mg\;cm^{-2}$ or less. The $IrO_2$ catalyst was composed of heterogeneous particles with particle sizes ranging from 20 to 70 nm, having a specific surface area of $3.8m^2g^{-1}$. The anode catalyst layer of about $5{\mu}m$ thickness was coated on the membrane (Nafion 117) for the MEA by the decal method. Scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS) confirmed strong adhesion at the interface between the membrane and the catalyst electrode. Although the loading of the $IrO_2$ catalyst was as low as $1.1-1.7mg\;cm^{-2}$, the SPE cell delivered a voltage of 1.88-1.93 V at a current density of $1A\;cm^{-2}$ and operating temperature of $80^{\circ}C$. That is, it was observed that the over-potential of the cell for the oxygen evolution reaction (OER) decreased with increasing $IrO_2$ catalyst loading. The electrochemical stability of the MEA was investigated in the electrolysis of water at a current density of $1A\;cm^{-2}$ for a short time. A voltage of ~2.0 V was maintained without any remarkable deterioration of the MEA characteristics.

Characterization of Dicyclopentadiene and 5-Ethylidene-2-norbornene as Self-healing Agents for Polymer Composite and Its Microcapsules

  • Lee, Jong-Keun;Hong, Sun-Ji;Xing Liu;Yoon, Sung-Ho
    • Macromolecular Research
    • /
    • 제12권5호
    • /
    • pp.478-483
    • /
    • 2004
  • Two different diene monomers [dicyclopentadiene (DCPD) and 5-ethylidene-2-norbornene (ENB)] as self-healing agents for polymeric composites were microencapsuled by in situ polymerization of urea and formaldehyde. We obtained plots of the storage modulus (G') and tan $\delta$ as a function of cure time by using dynamic mechanical analysis to investigate the cure behavior of the unreacted self-healing agent mixture in the presence of a catalyst. Glass transition temperatures (T$\_$g/) and exothermic reactions of samples cured for 5 and 120 min in the presence of different amounts of the catalyst were analyzed by differential scanning calorimetry. Of the two dienes, ENB may have advantages as a self-healing agent because, when cured under same conditions as DCPD, it reacts much faster in the presence of a much lower amount of catalyst, has no melting point, and produces a resin that has a higher value of T$\_$g/. Microcapsules containing the healing agent were successfully formed from both of the diene monomers and were characterized by thermogravimetric analysis. Optical microscopy and a particle size analyzer were employed to observe the morphology and size distribution, respectively, of the microcapsules. The microcapsules exhibited similar thermal properties as well as particle shapes and sizes.