• Title/Summary/Keyword: Polymer carriers

Search Result 111, Processing Time 0.018 seconds

Preparation and Characterization of Rosiglitazone-loaded PLGA Nanoparticles (Rosiglitazone약물을 함유한 PLGA 나노입자 제조 및 분석)

  • Shin, Ko-Eun;Huh, Kang-Moo;Lee, Yong-Kyu
    • KSBB Journal
    • /
    • v.23 no.5
    • /
    • pp.408-412
    • /
    • 2008
  • The rosiglitazone loaded poly (lactide-co-glycolide) (PLGA) nanoparticles (NPs) were prepared by the emulsion-evaporation method and optimized for particle size and entrapment efficiency. The optimized particles were 140-180 nm in size with narrow size distribution and 80% entrapment efficiency at 1% w/w initial drug loading when prepared with 1-3% w/v of PVA as a surfactant. These particulate carriers exhibited controlled in vitro release of rosiglitazone for 36 hrs at a nearly constant rate after 4 hrs release. In conclusion, these results indicate that PLGA NPs have greater potential for oral delivery of rosiglitazone.

Surface-attached Solid Dispersion

  • Park, Young-Joon;Oh, Dong-Hoon;Yan, Yi-Dong;Seo, Yoon-Gee;Lee, Sung-Neug;Choi, Han-Gon;Yong, Chul-Soon
    • Journal of Pharmaceutical Investigation
    • /
    • v.40 no.spc
    • /
    • pp.97-102
    • /
    • 2010
  • A novel surface-attached solid dispersion is designed to improve the solubility and oral bioavailability of poorly water-soluble drugs without crystalline change. Accordingly, it draws increasing interest because of excellent stability and no pollution for accomplishing enhanced solubility and bioavailability, which have recently been highlighted in connection with a number of higher value-added poorly water-soluble drugs. In addition, excellent stability can be attained when the poorly water-soluble drugs are not dissolved but dispersed in water and provide no crystallinity change. This solid dispersion is given by means of attaching the dissolved carriers such as hydrophilic polymer and surfactant to the surface of dispersed drug particles followed by changing the hydrophobic drug to hydrophilic form. The aim of the present review is to outline the preparation, physicochemical property and bioavailability of novel surface-attached solid dispersion with improved solubility and bioavailability of poorly water-soluble drugs without crystalline change.

Improved Dissolution of Poorly Water Soluble TD49, a Novel Algicidal Agent, via the Preparation of Solid Dispersion

  • Lee, Hyoung-Kyu;Cho, Hoon;Han, Hyo-Kyung
    • Journal of Pharmaceutical Investigation
    • /
    • v.40 no.3
    • /
    • pp.181-185
    • /
    • 2010
  • The objective of this study was to improve the extent of drug release as well as the dissolution rate of TD49, a novel algicidal agent, via the preparation of solid dispersion (SD). Among the various carriers tested, $Solutol^{(R)}$ HS15 was most effective to enhance the solubility of TD49. Subsequently, SDs of TD49 were prepared by using $Solutol^{(R)}$ HS15 and their solubility, dissolution characteristics and drug crystallinity were examined at various drug-carrier ratios. Solubili ty of TD49 was increased significantly in accordance with increasing the ratio of $Solutol^{(R)}$ HS15 in SDs. Compared to untreated powders and physical mixtures (PMs), SDs facilitated the faster and greater extent of drug release in water. Particularly, SD having the drug-carrier ratio of 1:20 exhibited approximately 90% of drug release within 1 hr. Differential scanning calorimetry (DSC) thermograms and X-ray diffraction (XRD) patterns suggested that SDs might enhance the dissolution of TD49 by changing the drug crystallinity to an amorphous form in addition to the increased solubilization of drug in the presence of $Solutol^{(R)}$ HS15. In conclusion, SD using $Solutol^{(R)}$ HS15 appeared to be effective to improve the extent of drug release and the dissolution rate of poorly water soluble TD49.

Synthesis and Drug-Releasing Behavior of Various Polymeric Prodrugs of PGE1 with PEG and Its Derivative as Polymer Carriers

  • Lee, Chan-Woo
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.4
    • /
    • pp.484-493
    • /
    • 2007
  • Two polymeric prodrugs of PGE1 (prodrugs IVg and PNg) were newly synthesized. The drug conjugation proceeded in quantitative yield without decomposition of PGE1 to PGA1. With two types conjugates, PEG-PGE1 and PN-PGE1 with different spacer groups, we first discovered a possibility of slow release of PGE1 in blood circulatory system. PGE1 is conjugated with PEG and PN through the long alkylene spacers, and their availability as polymeric prodrugs is evaluated. Their drug-releasing behavior was examined both in phosphate buffer (pH=7.4) and rat plasma. Each prodrug was known to be highly stabile in the buffer solution. The drug-releasing rate became much faster in rat plasma than in the buffer solution due to the acceleration by the plasma enzymes. The drug-release was found to reach a plateau in rat plasma because the released PGE1 or its derivatives may be captured or decomposed by the plasma proteins. The slower drug-releasing rate of pro drug PNg in rat plasma is reasonably attributed to the molecular aggregation due to the hydrophobic bonding between the PGE1 moieties and spacers.

Preparation and Mucoadhesive Test of CSA-loaded Liposomes with Different Characteristics for the Intestinal Lymphatic Delivery

  • Kim, Hyong-Ju;Lee, Chang-Moon;Lee, Yong-Bok;Lee, Ki-Young
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.6
    • /
    • pp.516-521
    • /
    • 2005
  • Drug delivery to the lymphatic system may be important in terms of the treatment with lymphatic involvement, such as tumor metastases and immunization. Especially, drug transport via the intestinal lymphatics after oral administration has been attracted lots of interests. The purpose of this study was to prepare cyclosporin A (CSA)-loaded liposomes, with different characteristics, and evaluate their mucoadhesivity. Three liposome preparations were formulated: cationic stearylamine liposomes (SA-Lip), anionic phosphatidylserine liposomes (PS-Lip), Polymer (chitosan)-coated liposomes (CS-Lip), and characterized. The liposome preparations were found to be spherical in shape, with PS-Lip being the smallest. The liposome preparations exhibited entrapment efficiencies in the order: PS-Lip $(52.5{\pm}2.9%)$ > SA-Lip $(48.8{\pm}3.3%)$ > CS-Lip $(41.7{\pm}4.2%)$. Finally, mucoadhesive tests were carried out using rat intestine, with SA-Lip (67%) showing the best adhesive rate of the three preparations (PS-Lip: 56%, CS-Lip: 61%). These results suggest that a positive charge on the surface of drug carriers may be an important factor for the intestinal drug delivery.

Comparative Study of Spray Drying Method and Solvent Evaporation Method for Preparation of Biodegradable Microspheres Containing Nicotine and Triamcinolone Acetonide (니코틴과 트리암시놀론 아세토니드를 함유하는 생분해성 마이크로스피어의 제조시 분무건조법과 용매증발법의 비교)

  • Park, Sun-Young;Cho, Mi-Hyun;Lee, Jeong-Hwa;Kim, Dong-Woo;Jee, Ung-Kil
    • Journal of Pharmaceutical Investigation
    • /
    • v.31 no.4
    • /
    • pp.257-263
    • /
    • 2001
  • The microspheres have been developed as a new drug delivery system. Although many particulate drug carriers, such as liposome, niosome and emulsion, have been introduced, injectable and biodegradable microspheres appears to be a particularly ideal delivery system because the local anesthesia is not necessary for the insertion of large implants and for the removal of the device after the drug release is finished. Biodegradable microspheres with nicotine and triamcinolone acetonide are prepared and evaluated. As biodegradible polymers, PLA (M.W. 15,000, PLA-0015), PLGA (M.W. 17,000, RG 502) and PLGA (M.W. 8,600, RG 502H) are used. This study attempted to prepare and evaluate the nicotine and triamcinolone acetonide-incorporated microspheres, which were prepared by two methods, solvent-evaporation and spray-drying methods. The microspheres, as a disperse system for injections, were evaluated by particle size, size distribution, entrapment efficiency, and in vitro drug release patterns. The differences of preparation method, partition coefficient, types of polymer, and preparation conditions of microspheres influence the particle size, entrapment efficiency, and in vitro drug release patterns.

  • PDF

Lactosaminated N-Succinyl-chitosan: Preparation and Biodistribution into the Intestine, Bone, Lymph Nodes and Male Genital Organs after I.v. Administration

  • Kato, Yoshinori;Onishi, Hiraku;Machida, Yoshiharu
    • Macromolecular Research
    • /
    • v.11 no.5
    • /
    • pp.382-386
    • /
    • 2003
  • Reductive amination of N-succinyl-chitosan (1) and lactose using sodium cyanoborohydride in 1/15 M phosphate buffer (pH 6.0) for 6 d was suitable for the preparation of lactosaminated N-succinyl-chitosan (2). At 8, 24 and 48 h after i.v. administration of fluorescently labeled 1 (1') or 2 (2'), Peyer's patch, mesenteric lymph nodes, testes, prostate, preputial grand, intestine (small intestine plus cecum), femoral muscle, backbone and peritoneum were taken. Peyer's patch and mesenteric lymph nodes were put together as lymph nodes. Over 10% of dose/g tissue was distributed to the prostate and lymph nodes at 48 h post-administration in both l' and 2'.2' was easily distributed into not only the liver but also prostate, intestine, preputial gland and lymph nodes. Although galactose receptors are known to exist not only on the liver parenchymal cells but also on prostate and testes, the selective distribution of 2' into the prostate and the testes were not observed clearly. This study suggested that 1 and 2 should have possibilities for both the prevention and cure of lymph node metastasis as drug carriers.

Bio-Derived Poly(${\gamma}$-Glutamic Acid) Nanogels as Controlled Anticancer Drug Delivery Carriers

  • Bae, Hee Ho;Cho, Mi Young;Hong, Ji Hyeon;Poo, Haryoung;Sung, Moon-Hee;Lim, Yong Taik
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.12
    • /
    • pp.1782-1789
    • /
    • 2012
  • We have developed a novel type of polymer nanogel loaded with anticancer drug based on bio-derived poly(${\gamma}$-glutamic acid) (${\gamma}$-PGA). ${\gamma}$-PGA is a highly anionic polymer that is synthesized naturally by microbial species, most prominently in various bacilli, and has been shown to have excellent biocompatibility. Thiolated ${\gamma}$-PGA was synthesized by covalent coupling between the carboxyl groups of ${\gamma}$-PGA and the primary amine group of cysteamine. Doxorubicin (Dox)-loaded ${\gamma}$-PGA nanogels were fabricated using the following steps: (1) an ionic nanocomplex was formed between thiolated ${\gamma}$-PGA as the negative charge component, and Dox as the positive charge component; (2) addition of poly(ethylene glycol) (PEG) induced hydrogen-bond interactions between thiol groups of thiolated ${\gamma}$-PGA and hydroxyl groups of PEG, resulting in the nanocomplex; and (3) disulfide crosslinked ${\gamma}$-PGA nanogels were fabricated by ultrasonication. The average size and surface charge of Dox-loaded disulfide cross-linked ${\gamma}$-PGA nanogels in aqueous solution were $136.3{\pm}37.6$ nm and $-32.5{\pm}5.3$ mV, respectively. The loading amount of Dox was approximately 38.7 ${\mu}g$ per mg of ${\gamma}$-PGA nanogel. The Dox-loaded disulfide cross-linked ${\gamma}$-PGA nanogels showed controlled drug release behavior in the presence of reducing agents, glutathione (GSH) (1-10 mM). Through fluorescence microscopy and FACS, the cellular uptake of ${\gamma}$-PGA nanogels into breast cancer cells (MCF-7) was analyzed. The cytotoxic effect was evaluated using the MTT assay and was determined to be dependent on both the concentration and treatment time of ${\gamma}$-PGA nanogels. The bio-derived ${\gamma}$-PGA nanogels are expected to be a well-designed delivery carrier for controlled drug delivery applications.

Fate and Activity of Microorganism introduced into the Soil (토양에 투입된 미생물의 거동 및 활성)

  • Chung, Jae-Chun;Ju, Seul;Lee, Jae-Woong;Lee, Jung-Jae
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.10 no.2
    • /
    • pp.100-116
    • /
    • 2002
  • There are several purpose to introduce microorganism into the Soil. The major purpose is to promote plant growth and inhibit plant pathogens. The model example is to put in nitrogen fixing symbiotic bacteria, Pythium and Rhizobium. In order to achieve the intended goal, the introduced microorganism should survive and colonize with sufficient density. The survival of introduced microorganism depend upon biotic and abiotic factors. Predation and competition are important among biotic factor. Water tension, organic carbon, inorganic nutrients(N, P), pH are important factor among abiootic factor. Soil texture and distribution of soil pore are also important in the survival and colonization of introduced microorganism. Selection by soil ecosystem for inoculant is a crucial factor for colonization. Good example are control of autochtonous microorganism and the introduction of surfactant biodegrading Pseudomonas. Sometimes, carriers such as peat and montmorillonite can be added to help colonization. Carriers can protect introduced microorganism by supplying protective microhabitat. Organic polymer is also used as a carrier to immobilize bacteria or industrial enzymes. Examples of these carrier are calcium alginate, agarose and k-carrageenan. The function of these carrier is to provide microhabitat and help colonization for introduced microorganism.

  • PDF

Effect of Curing and Compression Process on the Drug Release of Coated Ion-Exchange Resin Complexes

  • Jeong, Seong-Hoon;Wang, Hun-Sik;Koo, Ja-Seong;Choi, Eun-Joo;Park, Ki-Nam
    • Journal of Pharmaceutical Investigation
    • /
    • v.41 no.2
    • /
    • pp.67-73
    • /
    • 2011
  • Ion exchange resins can be one of the good carriers for sustained drug release. However, the sustained release may not be enough only with themselves and hence film coating with rate controlling polymers can be applied to have a further effect on the drug release. Due to the environmental and economic issues of organic solvent for the polymer coating, aqueous polymeric systems were selected to develop dosage forms. Among the many aqueous polymeric dispersions for the film coating, EC (ethylcellulose) based polymers such as Aquacoat$^{(R)}$ ECD and Surelease$^{(R)}$ were evaluated.A fluid-bed coating was applied as a processing method. The drug release rate was quite dependent on the coating level so the release rate could be modified easily by changing different levels of the coating. The drug release rate in the Aquacoat$^{(R)}$ coated resin particles was strongly dependent on curing, which is a thermal treatment to make homogeneous films and circumvent drug release changes during storage. After dissolution test using the compressed tablets in which the coated resin particles are contained, inhomogeneous coating and even pores could be observed showing that the mechanical properties of EC were not resistant to granulation and compaction process. However, when tablets were prepared in different batches, the release profiles were almost identical showing the feasibility of the coated resin particle as incorporated into the tablet formulation.