• Title/Summary/Keyword: Polymer behavior

Search Result 1,698, Processing Time 0.031 seconds

Effect of Manufacturing Method and Acidifier on the Dissolution Rate of Carvedilol from Solid Dispersion Formulations

  • Lim, Dong-Kyun;Bae, Jeong-Woo;Song, Byung-Joo;Jo, Han-Su;Kim, Hyoung-Eun;Lee, Dong-Won;Khang, Gil-Son
    • Journal of Pharmaceutical Investigation
    • /
    • v.41 no.6
    • /
    • pp.363-369
    • /
    • 2011
  • In this study, we demonstrated the release behavior of carvedilol with the content of polyvinylpyrrolidone K-30 (PVP K-30) and the effect of citric acid and fumaric acid as acidifiers on the release behavior of drug. In addition, it tries to inquire into the release behavior difference of the carvedilol according to the manufacturing method. The release behavior of the tablets was compared with Dilatrand$^{(R)}$ in the simulated gastric fluid (pH1.2). Differential scanning calorimeter (DSC), X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FT-IR) were characterized for the physicochemical properties of the tablets. In case of mixing the carvedilol and PVP K-30, in case the ratio of the carvedilol and PVP K-30 was 1:5, the release behavior was the highest among. As well as the dissolution rate of tablets manufactured by lyophilization and rotary evaporator was higher than physical mixture. The dissolution rate of containing acidifiers was more improved. But, rather the excessive amount of the acidifier addition reduced the dissolution rate.

Abnormal Behavior in Color Tracking in the Fringe-Field Switching (FFS) Liquid Crystal Display

  • Jung, Jun-Ho;Ha, Kyung-Su;Chae, Mi-Na;Cho, In-Young;Kim, Woo-Il;Kim, Dae-Hyun;Kim, Sung-Min;Lee, Seung-Hee
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.616-619
    • /
    • 2009
  • Color tracking behavior of in the fringe-field switching (FFS) mode using a liquid crystal with positive dielectric anisotropy has been studied. In the in-plane switching and vertical alignment devices, color chromaticity at normal direction changes from bluish to yellowish white linearly with increasing grey levels from dark to white state. Interestingly, abnormal behavior in color tracking is observed in FFS devices using a liquid crystal with positive dielectric anisotropy, that is, it changes from bluish to yellowish up to a certain middle grey level but turns over to bluish white with further increasing from a grey level to a fully white state. In this paper, we analyze this abnormal effect from the calculated and experimental results.

  • PDF

Behavior of Polymer-Impregnated Concrete Beams (폴리머 침투콘크리트 보의 거동)

  • 변근주;이상민;유동우;이용진
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1992.04a
    • /
    • pp.67-73
    • /
    • 1992
  • Polymer-Impregnated Concrete(PIC) is a new polymer-concrete composite material which consist of basic cement concrete and polymer. The mechanical properties and behavior of PIC depend on the type of polymers and the impregnation techniques. In general, the polymer impregnation can improve the strength, durability and ductility of normal concrete. The objective of this study is to develop the analytical procedure for analyzing the structural responces of polymer-impregnated concrete beams with different polymer loading by using finite element method on the basis of experimental results.

  • PDF

Flexural Behavior of Polymer Mortar Permanent Forms Using Methyl Methacrylate Solution of Waste Expanded Polystyrene

  • Bhutta, M. Aamer Rafique;Tsuruta, Ken;Ohama, Yoshihiko
    • International Journal of Concrete Structures and Materials
    • /
    • v.2 no.1
    • /
    • pp.35-39
    • /
    • 2008
  • This experimental study examines the applicability of polymer mortar permanent forms using a methyl methacrylate (MMA) solution of waste expanded polystyrene (EPS) to develop effective recycling processes for the EPS, referring to the flexural behavior of a polymer-impregnated mortar permanent form with almost the same performance as commercial products. An MMA solution of EPS is prepared by dissolving EPS in MMA, and unreinforced and steel fiber-reinforced polymer mortars are mixed using the EPS-MMA-based solution as a liquid resin or binder. Polymer mortar permanent forms (PMPFs) using the EPS-MMA-based polymer mortars without and with steel fiber and crimped wire cloth reinforcements and steel fiber-reinforced polymer-impregnated mortar permanent form (PIMPF) are prepared on trial, and tested for flexural behavior under four-point (third-point) loading. The EPS-MMAbased PMPFs are more ductile than the PIMPF, and have a high load-bearing capacity. Consequently, they can replace PIMPF in practical applications.

Finite Element Analysis of the Room Temperature Nanoimprint Lithography Process with Rate-Dependent Plasticity (변형률속도를 고려한 상온 나노임프린트 공정의 유한요소해석)

  • Song J. H.;Kim S. H.;Hahn H. Thomas;Huh H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.63-66
    • /
    • 2005
  • Nanoimprint lithography (NIL) process at room temperature has been newly proposed in recent years to overcome the shape accuracy and sticking problem induced in a conventional NIL process. Success of the room temperature NIL relies on the accurate understand of the mechanical behavior of the polymer. Since a conventional NIL process has to heat a polymer above the glass transition temperature to deform the physical shape of the polymer with a mold pattern, viscoelastic property of polymer have major effect on the NIL process. However, rate dependent behavior of polymer is important in the room temperature NIL process because a mold with engraved patterns is rapidly pressed onto a substrate coated with the polymer by the hydraulic equipment. In this paper, finite element analysis of the room temperature NIL process is performed with considering the strain rate dependent behavior of the polymer. The analyses with the variation of imprinting speed and imprinting pattern are carried out in order to investigate the effect of such process parameters on the room temperature NIL process. The analyses results show that the deformed shape and imprint force is quite different with the variation of punch speed because the dynamic behavior of the polymer is considered with the rate dependent plasticity model. The results provide a guideline for the determination of process conditions in the room temperature NIL process.

  • PDF

Gas Separation of Pyrolyzed Polymeric Membranes: Effect of Polymer Precursor and Pyrolysis Conditions

  • Jung, Chul-Ho;Kim, Gun-Wook;Han, Sang-Hoon;Lee, Young-Moo
    • Macromolecular Research
    • /
    • v.15 no.6
    • /
    • pp.565-574
    • /
    • 2007
  • In this study, five representative, commercially available polymers, Ultem 1000 polyetherimide, Kapton polyimide, phenolic resin, polyacrylonitrile and cellulose acetate, were used to prepare pyrolyzed polymer membranes coated on a porous {\alpha}-alumina$ tube via inert pyrolysis for gas separation. Pyrolysis conditions (i.e., final temperature and thermal dwell time) of each polymer were determined using a thermogravimetric method coupled with real-time mass spectroscopy. The surface area and pore size distribution of the pyrolyzed materials derived from the polymers were estimated from the nitrogen adsorption/desorption isotherms. Pyrolyzed membranes from polymer precursors exhibited type I sorption behavior except cellulose acetate (type IV). The gas permeation of the carbon/{\alpha}-alumina$ tubular membranes was characterized using four gases: helium, carbon dioxide, oxygen and nitrogen. The polyetherimide, polyimide, and phenolic resin pyrolyzed polymer membranes showed typical molecular sieving gas permeation behavior, while membranes from polyacrylonitrile and cellulose acetate exhibited intermediate behavior between Knudsen diffusion and molecular sieving. Pyrolyzed membranes with molecular sieving behavior (e.g., polyetherimide, polyimide, and phenolic resin) had a $CO_2/N_2$ selectivity of greater than 15; however, the membranes from polyacrylonitrile and cellulose acetate with intermediate gas transport behavior had a selectivity slightly greater than unity due to their large pore size.

Strain hardening behavior of linear polymer melts

  • Hong Joung Sook;Ahn Kyung Hyun;Lee Seung Jong
    • Korea-Australia Rheology Journal
    • /
    • v.16 no.4
    • /
    • pp.213-218
    • /
    • 2004
  • Linear high-density polyethylene (PE) was controlled to induce strain-hardening behavior by introducing a small amount of second component with an anisotropic structure. In order to form an anisotropic structure in the PE matrix, the polymer was extruded through a twin-screw extruder, and the structure was controlled by varying the extrusion conditions. Depending on conditions, the second component formed a film, thread and droplet structure. If the second component was kept rigid, the morphology evolution could be delayed and the second component could maintain its film or thread structure without further relaxation. In par­ticular, the second component of the thread structure made a physical network and gave rise to remarkable strain hardening behavior under high extension. This study suggests a new method that induces strain hard­ening behavior by introducing a physically networked second component into the linear polymer melt. This result is anticipated to improve the processibility of linear polymers especially when extensional flow is dominant, and to contribute to our understanding of strain hardening behavior.

Mechanical Behavior of Steel Fiber Reinforced Polymer-impregnated Concrete (강섬유보강 폴리머침투콘크리트의 기계적 성질에 관한 연구)

  • 변근주;송영철;정해성;정기영
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1993.10a
    • /
    • pp.156-161
    • /
    • 1993
  • This paper is to develop steel fiber reinforced polymer-impregnated concrete(SFPIC) by impregnation polymer impregnate into hardened steel fiber reinforced concrete(SFRC). Steel fiber induces ductile behavior and polymer impregnant increase compressive strength. Steel fiber reinforced polymer-impregnated concrete specimens are prepared with fiber contents of 0.0, 1.5, 2.0, 2.5% and tested to obtain uni-axial and bi-axial compression strengths, tensile strength and flexural strength. The strength and mechanical properties of normal concrete, SFRC, SFPIC are compared.

  • PDF

The Prediction of Long-Term Creep Behavior of Recycled PET Polymer Concrete (PET 재활용 폴리머 콘크리트의 크리프 거동 예측)

  • Jo, Byung-Wan;Tae, Gi-Ho;Kwon, Oh-Hyuk
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.320-323
    • /
    • 2004
  • In general, polymer concrete has more excellent mechanical properties and durability than Portland cement concrete, but very sensitive to heat and has large deformations. In this study, the long-term creep behaviors was predicted by the short-term creep test, and then the characteristic of creep of recycled-PET polymer concrete was defined by material and experimental variables. The error in the predicted long-term creep values is less than 5 percent for all polymer concrete systems. The filler carry out an important role to restrict the creep strains of recycled PET polymer concrete. The creep strain and specific on using the CaCO3 were less than using fly-ash. the creep increases with an increase in the applied stress, but not proportional the rate of stress increase ratio. The creep behavior of polymer concrete using recycled polyester resin is not a linear viscoelastic behavior.

  • PDF

Rheological Behavior of Polymer/Layered Silicate Nanocomposites under Uniaxial Extensional Flow

  • Park Jun-Uk;Kim Jeong-Lim;Kim Do-Hoon;Ahn Kyung-Hyun;Lee Seung-Jong;Cho Kwang-Soo
    • Macromolecular Research
    • /
    • v.14 no.3
    • /
    • pp.318-323
    • /
    • 2006
  • We investigated the rheological behaviors and orientation of three different types of layered silicate composite systems under external flow: microcomposite, intercalated and exfoliated nanocomposites. Rheological measurements under shear and uniaxial extensional flows, two-dimensional, small-angle X-ray scattering and transmission electron microscopy were conducted to investigate the properties, as well as nano- and micro-structural changes, of polymer/layered silicate nanocomposites. The preferred orientation of the silicate layers to the flow direction was observed under uniaxial extensional flow for both intercalated and exfoliated systems, while the strain hardening behavior was observed only in the exfoliated systems. The degree of compatibility between the polymer matrix and clay determined the microstructure of polymer/clay composites, strain hardening behavior and spatial orientation of the clays under extensional flow.