• Title/Summary/Keyword: Polymer Sheet

Search Result 327, Processing Time 0.032 seconds

Water-Soluble Conjugated Polymer and Graphene Oxide Composite Used as an Efficient Hole-Transporting Layer for Organic Solar Cells (수용성 공액고분자/그래핀 옥사이드 복합체를 이용한 유기태양전지의 정공수송층에 대한 연구)

  • Kim, Kyu-Ri;Oh, Seung-Hwan;Kim, Hyun Bin;Jeun, Joon-Pyo;Kang, Phil-Huyn
    • Polymer(Korea)
    • /
    • v.38 no.1
    • /
    • pp.38-42
    • /
    • 2014
  • The poly[(9,9-bis((6'-(N,N,N-trimethylammonium)hexyl)-2,7-fluorene)-alt-(9,9-bis(2-(2-(2-methoxyethoxy)ethoxy)ethyl)-9-fluorene)) dibromide (WPF-6-oxy-F)] and graphene oxide (GO) was blended and irradiated with gamma ray under ambient condition. This WPF-6-oxy-F-GO composite was investigated as a hole-transporting layer (HTL) in organic solar cells (OSCs). Compared with the pristine GO, the sheet resistance ($R_{sheet}$) of irradiated WPF-6-oxy-F-GO was decreased about 2 orders of magnitude. The reason for the decrease of $R_{sheet}$ is the effect of efficient ${\pi}-{\pi}$ packing resulted from the formation of C-N bond between WPF6-oxy-F and GO. As a result, the efficiency of OSCs was dramatically enhanced ~ 6.10% by introducing irradiated WPF-6-oxy-F-GO as a HTL. WPF-6-oxy-F-GO is a sufficient candidate for HTL to facilitate the low-cost and high efficiency OSCs.

Effects of Sheet Thickness on Electromagnetic Wave Absorption Characteristics in FeSiCr/Polymer Composite Sheets (FeSiCr/폴리머 복합 시트의 전자파 흡수 특성에 미치는 시트 두께의 영향)

  • Noh, Tae-Hwan;Kim, Ju-Beom
    • Journal of the Korean Magnetics Society
    • /
    • v.20 no.4
    • /
    • pp.143-148
    • /
    • 2010
  • This study examined the effects of sheet thickness on electromagnetic wave absorption characteristics and internal microstructure in 92.6%Fe-6.5%Si-0.9%Cr (wt%) alloy flakes/polymer composite sheets available for quasi-microwave band. The composite sheets with the thickness of 0.3, 0.4 and 0.5 mm were prepared by tape casting. A significant decrease in transmission parameter $S_{21}$ and a large increase in power loss were observed for the thick composite sheet in the frequency range of 1~5 GHz. However the permeability properties were not affected by thickness variation, while the imaginary part of complex permittivity increased with the increase of sheet thickness at 1~5 GHz. The enhanced electromagnetic wave absorption characteristics in the thicker composite sheets was attributed to the changed microstructure and the higher dielectric loss.

Fabrication of Polyurethane-sheet Acoustic Windows and Their Mechanical and Acoustic Properties in Water (폴리우레탄 평판 음향 윈도우 제조와 수중에서 기계적 및 음향적 특성 연구)

  • Cho, Mi-Suk;Choi, Chae-Seok;Lee, So-Jung;Yoon, Suk-Wang;Koo, Ja-Chun;Lee, Young-Kwan
    • Polymer(Korea)
    • /
    • v.34 no.2
    • /
    • pp.104-107
    • /
    • 2010
  • Polyurethane (PU) sheets were fabricated by the reaction of polypropylene glycol (PPG) and liquid diphenyl methane diisocyanate (L-MDI) with various trimethylol propane (TMP) contents. The $T_g$ value was varied from 34.8 $^{\circ}C$ to 49.9 $^{\circ}C$ according to the TMP content. As the content of TMP was increased from 4 to 12 wt%, the modulus of the PU sheet was increased from 322 MPa to 423 MPa, its tensile strength was increased from 10.6 MPa to 14.8 MPa, and its elongation was decreased from 62.8% to 49%. In case of acoustic properties, the sound speed of PU sheet was increased while its attenuation coefficient was decreased as the content of TMP was increased. The fabricated PU sheet was stable in water bath for 4 weeks.

Verification of the Possibility of Convergence Medical Radiation Shielding Sheet Using Eggshells (계란 껍데기를 이용한 융합 의료방사선 차폐시트의 가능성 검증)

  • Kim, Seon-Chil
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.6
    • /
    • pp.33-38
    • /
    • 2021
  • In order to manufacture a lightweight medical radiation shielding sheet, a new shielding material was studied. We tried to verify the possibility of a shielding material by mixing egg shell powder, which is thrown away as food waste at home, with a polymer material. Existing lightweight materials satisfy eco-friendly conditions, but there are difficulties in the economics of shielding materials due to the cost of the material refining process. This study aims to solve this problem by using egg shells, which are household waste. A 3 mm-thick shielding sheet was fabricated using HDPE, a polymer material, and particle distribution within the cross-section of the shielding sheet was also verified. The shape of the particles was rough and there were voids between the particles, and the average weight per unit area was 1.5 g/cm2. The shielding performance was around 20% in the low energy area and 10% in the high energy area, showing the possibility of a low-dose medical radiation shielding body.

Experimental study of the behavior of composite timber columns confined with hollow rectangular steel sections under compression

  • Razavian, Leila;Naghipour, Morteza;Shariati, Mahdi;Safa, Maryam
    • Structural Engineering and Mechanics
    • /
    • v.74 no.1
    • /
    • pp.145-156
    • /
    • 2020
  • There are separate merits and demerits to wood and steel. The combination of wood and steel as a compound section is able to improve the properties of both and ultimately increase their final bearing capacity. The composite cross-section made of steel and wood has higher hardness while showing more ductility and the local buckling of steel is delayed or completely prevented. The purpose of this study is to investigate the behavior of composite columns enclosed in wooden logs and the hollow sections of steel that will be examined in a laboratory environment under the axial load to determine the final bearing capacity and sample deformation. In terms of methodology, steel sheet and carbon fiber reinforced polymer sheet (FRP) are tested to construct hollow rectangular sections and reinforce timber. Besides, the method of connecting hollow sections and timber including glue and screw has been also investigated. As a result, timber lumber enclosed with carbon fiber-reinforced polymer sheets in which fibers are horizontally located at 90° are more resistant with better ductility.

Bond Characteristics of FRP sheet to Various Types under Cyclic Load (반복하중하의 FRP 시트 종류에 따른 부착특성)

  • Ko, Hune Bum
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.2
    • /
    • pp.131-138
    • /
    • 2008
  • Fiber-reinforced polymer (FRP) sheets have been successfully used to retrofit a number of existing concrete buildings and structures because of their excellent properties (high strength, light weight and high durability). Bond characteristics between FRP sheets and concrete should be investigated to ensure an effective retrofitting system. RC structures strengthened with FRP sheets are often subjected to cyclic load (traffic, seismic, temperature, etc.). This research addresses a local bond stress-slip relationship under cyclic loading conditions for the FRP-concrete interface. 18 specimens were prepared with three types of FRP sheets (aramid, carbon, and polyacetal) and two types of sheet layer(one or two). The characteristics of bond stress-slip were verified through experimental results on load-displacement relationship.

Fiber Loading Effect on the Interlaminar, Mechanical, and Thermal Properties of Novel Lyocell/Poly(butylene succinate) Biocomposites (새로운 라이오셀/poly(butylene succinate) 바이오복합재료의 층간전단, 기계적, 열적 특성에 미치는 섬유함량의 영향)

  • Lee, Jae Young;Kim, Jin Myung;Cho, Donghwan;Park, Jong Kyoo
    • Journal of Adhesion and Interface
    • /
    • v.10 no.2
    • /
    • pp.106-112
    • /
    • 2009
  • In the present work, novel biocomposites made with biodegradable Lyocell woven fabrics and poly (butylene succinate) were successfully fabricated for the first time. Lyocell/poly(butylene succinate) biocomposites with different fiber loadings of 0, 30, 40, 50 and 60 wt% were prepared by compression molding with a sheet interleaving manner. The effect of Lyocell fabric loading on the interlaminar shear strength, tensile and flexural properties, heat deflection temperature, thermal expansion behavior, and thermal stability of the biocomposites was investigated. The properties strongly depended on the fabric loading and the results were consistent with each other. It was demonstrated that the Lyocell fabrics played a remarkable role in improving the properties of poly(butylene succinate) resin by incorporating the fabrics into the resin. The greatest inter-laminar, tensile, flexural and thermal properties of the biocomposites were obtained with Lyocell fabrics of 50% by weight.

  • PDF

Fluorescent Silk Fibroin Nanoparticles Prepared Using a Reverse Microemulsion

  • Myung, Seung-Jun;Kim, Hun-Sik;Kim, Yeseul;Chen, Peng;Jin, Hyoung-Joon
    • Macromolecular Research
    • /
    • v.16 no.7
    • /
    • pp.604-608
    • /
    • 2008
  • Color dye-doped silk fibroin nanoparticles were successfully fabricated using a microemulsion method. An aqueous silk fibroin solution was prepared by dissolving cocoons (Bombyx mori) in a concentrated lithium bromide solution followed by dialysis. A color dye solution was also mixed with the aqueous silk fibroin solution. The surfactants used for the microemulsion were then removed by methanol and ethanol, yielding color dye-doped silk fibroin nanoparticles, approximately 167 nm in diameter. The secondary structure of the nanoparticles showed a $\beta$-sheet conformation, as characterized by Fourier transform infrared spectroscopy. The morphology of the nanoparticles was determined by field emission scanning electron microscopy, transmission electron microscopy and atomic force microscopy, and their size and size distribution were measured by dynamic light scattering. The color dye-doped silk fibroin nanoparticles were examined by confocal laser scanning microscopy.

The study on evaluation for PV module development using the silicone encapsulation (Silicone 봉지재를 이용한 태양광 모듈 제조 공정 및 평가에 대한 연구)

  • Jung, In-Sung;Lee, Bum-Su;Yang, O-Bong;Kang, Seong-Hwan;Kim, Jong-Il
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.137-142
    • /
    • 2011
  • Individual solar cells must be connected together to give the appropriate current and voltage levels and they must also be protected from damage by the environment. [1] PV module consists of a glass/ polymer encapsulation/ solar cell string/ polymer encapsulation/ back sheet. Usually, encapsulation materials is used EVA(ethylene vinyl acetate), PVB(polyvinyl butyral), PO(polyolefin)sheet. This study is about fabrication of module using silicone material instead of above them. We got to know advantage that is fabrication time and efficiency of modules.

  • PDF

An Experimental Study on the Roof Composite Waterproofing Method for Membrane & Sheet Integrated Waterproofing Material (도막.시트 일체형 방수재를 이용한 옥상용 복합방수 공법에 관한 실험적 연구)

  • Oh Mi-Hyun;Park Jin-Sang;Choi Sung-Min;Park Young-Tea;Oh Sang-Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2006.05a
    • /
    • pp.31-34
    • /
    • 2006
  • In this study on the appliable Asphalt sheet of monolithic and inorganic matter waterproofing material using of field because of problem of complex waterproofing sheet. Before this cement polymer modified waterproof coating and appliable asphalt sheet of monolithic whether have stability by method of construction about all style waterproofing that evaluate to new method of construction development naturally big emphasis put and try to approach. Did performance test item first at, as a result, drew by suitable thing in all KS items. This is considered to have more effective spot construction work because if means that have stability by material as well as method of construction.

  • PDF