• Title/Summary/Keyword: Polymer Melt

Search Result 454, Processing Time 0.024 seconds

Preparation of Eudragit coated solid lipid nanoparticles (SLN) for hydrophilic drug delivery

  • Han, Sung-Chul;Yoon, Hee-Sun;Lee, Ki-Young;Kim, Yeon-Zu;Kim, Dong-Woon
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.655-659
    • /
    • 2003
  • Solid lipid nanoparticle (SLN) system has been attracted increasing attention during last few years as a potential drug delivery carrier However, the SLN have disadvantage of low encapsulation efficiency for hydrophilic drug. In this study, for increase it's encapsulation efficiency, we prepared the $Eudragit^{\circledR}$ L100-55 (eudragit) coated SLN(E-SLN) based on solvent evaporation method and melt dispersion technique, and analyzed their physicochemical properties in terms of particle size, morphology, and encapsulation efficiency. As a result, they have a ${\pm}150$ nm particle size, spherical shape, and $10^{\sim}25$ % loading efficiency. SLN consists of coconut oil as core material, ascorbic acid and okyong-san as hydrophilic drug.

  • PDF

Three dimensional flow analysis within a profile extrusion die by using control volume finite-element method

  • Kim, Jongman;Youn, Jae-Ryoun;Hyun, Jae-Chun
    • Korea-Australia Rheology Journal
    • /
    • v.13 no.2
    • /
    • pp.97-106
    • /
    • 2001
  • Three-dimensional flow analysis was performed by using the control volume finite-element method for design of a profile extrusion die. Because polymer melt behavior is complicated and cross-sectional shape of the profile extrusion die is changing continuously, the fluid flow within the die must be analyzed three-dimensionally. A commercially available polypropylene is used for theoretical and experimental investigations. Material properties are assumed to be constant except for the viscosity. The 5-constant modified Cross model is used for the numerical analysis. A test problem is examined in order to verify the accuracy of the numerical method. Simulations are performed for conditions of three different screw speeds and three different die temperatures. Predicted pressure distribution is compared with the experimental measurements and the results of the previous two-dimensional study. The computational results obtained by using three dimensional CVFEM agree with the experimental measurements and are more accurate than those obtained by using the two-dimensional cross-sectional method. The velocity profiles and the temperature distributions within several cross-sections of the die are given as contour plots.

  • PDF

The Thermal and Mechanical Properties of Recycled PP/EVOH/PP Scrap with Compatibilizers (재활용 PP/EVOH/PP 스크랩의 상용화제별 열적/기계적 특성연구)

  • Chun, Yong-Jin;Ahn, Tae-Kwang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.1
    • /
    • pp.176-181
    • /
    • 2008
  • This paper was studied the possibility on the recycling of the scrap used as the food packaging materials, PP/EVOH/PP multilayer. Recycling study was investigated into thermal and mechanical properties of samples which were mixed PP/EVOH waste plastics scrap with two kinds of compatibilizers. Melt behaviors as thermal property and tensile strength, % strain at break point, and tensile modulus as mechanical properties were investigated into kinds of and the weight ratio of compatibilizers. Mixed PP/EVOH waste plastics shows compatibity when Minanto-s and GMS as compatibilizers are mixed 0.5wt.% over.

The Effects of the GAIM Process Variables on the Penetration-Length Variations in a Unary Branch Type Runner Mold (편측분기형 러너 금형에서 가스사출 성형변수가 성형품의 중공부 길이 변화에 미치는 영향)

  • Han Seong Ryul;Park Tae Won;Jeong Yeong Deug
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.1
    • /
    • pp.137-142
    • /
    • 2005
  • Gas-Assisted Injection Molding(GAIM) is an innovative technology for producing plastic parts and has been received extensive attention in the plastic manufacturing industries. But, due to gas-polymer interacting during the gas injection phase, the process has significantly different characteristics from conventional injection molding and, therefore, the control of the process requires much technical knowledge in processing and materials. The experiment was performed about variations of gas-penetration length that is affected by filling imbalance resulting from the structure of runner. The Taguchi method was used for the design of experiment. The most effective factors for the gas-penetration length were the shot size and mold temperature. The most effective factors for the difference of the gas-penetration length were the melt temperature and shot size. This study also discussed the filling imbalance phenomenon in a unary branch runner type mold that has geometrically balanced runner.

Electromagnetic Wave Absorption Properties in Fe-based Nanocrystalline P/M Sheets with Carbon Black and BaTiO3 Additives

  • Kim, Mi-Rae;Park, Won-Wook
    • Journal of Powder Materials
    • /
    • v.16 no.1
    • /
    • pp.33-36
    • /
    • 2009
  • In order to increase the magnetic loss for electromagnetic(EM) wave absorption, the soft magnetic $Fe_{73}Si_{16}B_7Nb_3Cu_1$(at%) alloy strip was used as the basic material in this study. The melt-spun strip was pulverized using an attrition mill, and the pulverized flake-shaped powder was crystallized at $540^{\circ}C$ for 1h to obtain the optimum grain size. The Fe-based powder was mixed with 2 wt% $BaTiO_3$, $0.3{\sim}0.6$ wt% carbon black, and polymer-based binders for the improvement of electromagnetic wave absorption properties. The mixture powders were tape-cast and dried to form the absorption sheets. After drying at $100^{\circ}C$ for 1h, the sheets of 0.5 mm in thickness were made by rolling at $60^{\circ}C$, and cut into toroidal shape to measure the absorption properties of samples. The characteristics including permittivity, permeability and power loss were measured using a Network Analyzer(N5230A). Consequently, the properties of electromagnetic wave absorber were improved with the addition of both $BaTiO_3$ and carbon black powder, which was caused by the increased dielectric loss of the additive powders.

The Effect of Oligomer Blending on the Flow Properties of Polycarbonate

  • Cho, Sung-Hwan;Kim, Sun-Mi;Cho, Mi-Suk;Lee, Young-Kwan;Kim, Dong-Min;Kim, Whan-Gi
    • Macromolecular Research
    • /
    • v.17 no.12
    • /
    • pp.1021-1024
    • /
    • 2009
  • We successfully prepared high-flow polycarbonate (PC) by blending commercial PC with a low molecular weight PC oligomer. The oligomer was synthesized by the addition of a large quantity of mono functional phenol groups, and the chain end group was reacted with p-tertiary butyl phenol (PTBP) to block the reactivity. The viscosity average molecular weight ($M_v$) for the oligomer was about 4,000-5,000 g/mol, compared to ~19,000 g/mol for the PC blend obtained by blending 10 wt% of the prepared oligomer with the commercial grade PC ($M_v$ of 21,000 g/mol). The blended PC had a melt flow index of 45, which is 2.5 times higher, and a processing temperature that was $20^{\circ}C$ lower, than that of commercial grade PC having a similar $M_v$.

Fabrication and Characterization of Carbon Nanotube/Carbon Fiber/Polycarbonate Multiscale Hybrid Composites

  • Cho, Beom-Gon;Hwang, Sang-Ha;Park, Young-Bin
    • Composites Research
    • /
    • v.29 no.5
    • /
    • pp.269-275
    • /
    • 2016
  • Multiscale hybrid composites, which consist of polymeric resins, microscale fibers and nanoscale reinforcements, have drawn significant attention in the field of advanced, high-performance materials. Despite their advantages, multiscale hybrid composites show challenges associated with nanomaterial dispersion, viscosity, interfacial bonding and load transfer, and orientation control. In this paper, carbon nanotube(CNT)/carbon fiber(CF)/polycarbonate(PC) multiscale hybrid composite were fabricated by a solution process to overcome the difficulties associated with controlling the melt viscosity of thermoplastic resins. The dependence of CNT loading was studied by varying the method to add CNTs, i.e., impregnation of CF with CNT/PC/solvent solution and impregnation of CNT-coated CF with PC/solvent solution. In addition, hybrid composites were fabricated through surfactant-aided CNT dispersion followed by vacuum filtration. The morphologies of the surfaces of hybrid composites, as analyzed by scanning electron microscopy, revealed the quality of PC impregnation depends on the processing method. Dynamic mechanical analysis was performed to evaluate their mechanical performance. It was analyzed that if the position of the value of tan ${\delta}$ is closer to the ideal line, the adhesion between polymer and carbon fiber is stronger. The effect of mechanical interlocking has a great influence on the dynamic mechanical properties of the composites with CNT-coated CF, which indicates that coating CF with CNTs is a suitable method to fabricate CNT/CF/PC hybrid composites.

Intelligent Design System for Gate and Runner in Injection Molding (사출성형을 위한 게이트.런너 지적설계시스템에 관한 연구)

  • Lee, Chan-Woo;Huh, Yong-Jeong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.9
    • /
    • pp.192-203
    • /
    • 2001
  • The design of gate and runner(delivery system) is one of the most important subject in injection molding. Delivery system is a channel to flow the polymer melt from the injection molding machine to the mold cavities. Also, delivery system affect quality and productivity of the part. The synthesis of delivery system of injection molding has been done empirically, since it requires profound knowledge about the moldability and causal effects on the properties of the part, which are not available to designers through the current CAD systems. GATEWAY is a knowledge module which contains knowledge to permit non-experts as well as mold design experts to generate the acceptable geometries of gate and runner far injection molded parts. A knowledge-based CAD system is constructed by adding the knowledge module, GATEWAY, to an existing geometric modeler. A knowledge-based CAD system is a new tool which enables the concurrent design and CIM with integrated and balanced design decisions at the initial design of injection molding.

  • PDF

Elastic and excellent moisture transmittance is developing bio-laminated fabric for footwear (투습방수성이 우수한 신발용 바이오 라미네이팅 소재개발)

  • Gwon, O-Kyeong;Kim, Jong-Hwan;Park, Seon-Hwa;Kim, Seung-Jin;Hong, Jong-Yun
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2008.10a
    • /
    • pp.109-110
    • /
    • 2008
  • 본 연구에서는 신축성이 우수한 친수형 무공 PET필름을 사용해서, 소취성, 보온성 및 투습방수성이 우수한 신발용 소재를 개발하였다. 이상의 목적을 달성하기 위해서 최적 소재의 선정, PET필름의 특성평가, 최적 라미네이팅 공정조건 확립, 첨가제 선정 및 가공조건 확립 등에 대해서 실험고찰을 하였으며, 얻어진 주요 결과는 다음과 같다. (1) 신발의 갑피용 및 안창용 최적소재로서 경편직물을 선정하였으며, PET필름의 최적 요구특성은 내수성 9460mmH2O, 투습성 10,000g/m2/24hrs, 인장강도42kgf/cm2, 신도249% 였다. (2) Hot-melt 라미네이팅 공정에서의 투습방수성을 좌우하는 Dot roll No, Coating gap의 최적조건은 CP75(Engraved dot roll no), -0.2mm(Coating Unit gap) 였다. (3) EVA base polymer 및 기타 조제의 최적 배합비를 확립하고 이를 바탕으로 compound를 제조하여 Press로 molding하여 안창용 Sponge를 얻었다. (4) 안창 sponge 위에 점착된 knit 소재의 소취효과는 우수하였으며, 갑피용 투습방수 경편직물의 보온성도$15{\sim}20%$로 우수하였다.

  • PDF

Full-atomistic simulations of poly(ϵ-caprolactone) diol models with CVFF and CGenFF

  • Chang, Yin;Chang, Shu-Wei
    • Multiscale and Multiphysics Mechanics
    • /
    • v.1 no.4
    • /
    • pp.327-340
    • /
    • 2016
  • Poly(${\epsilon}$-caprolactone) (PCL) diol, with good biodegradation and biocompatibility, is one of the widely used soft segments (SSs) in composing bio-polyester-urethanes (Bio-PUs), which show great potential in both biomedical and tissue engineering applications. Properties of Bio-PUs are tunable by combining SS monomers with different molecular weights, structures, modifications, and ratio of components. Although numbers of research have reported many Bio-PUs properties, few studies have been done at the molecular scale. In this study, we use molecular dynamic (MD) simulation to construct atomistic models for two commonly used PCL diol SSs with different molecular weights 1247.58 Da and 1932.42 Da. We compare the simulation results by using two widely used classical force fields for organic molecules: Consistent Valence Force Field (CVFF) and CHARMM General Force Field (CGenFF), and discuss the validity and accuracy. Melt density, volume, polymer conformations, transition temperature, and mechanical properties of PCL diols are calculated and compared with experiments. Our results show that both force fields provide accurate predictions on the properties of PCL diol system at the molecular scale and could help the design of future Bio-PUs.