Browse > Article

The Effect of Oligomer Blending on the Flow Properties of Polycarbonate  

Cho, Sung-Hwan (Department of Chemical Engineering, Sungkyunkwan University)
Kim, Sun-Mi (Advanced Polymeric Materials R&D Center, Samyang Corporation)
Cho, Mi-Suk (Department of Chemical Engineering, Sungkyunkwan University)
Lee, Young-Kwan (Department of Chemical Engineering, Sungkyunkwan University)
Kim, Dong-Min (Department of Materials Science and Engineering, Hongik University)
Kim, Whan-Gi (Department of Applied Chemistry, Konkuk University)
Publication Information
Macromolecular Research / v.17, no.12, 2009 , pp. 1021-1024 More about this Journal
Abstract
We successfully prepared high-flow polycarbonate (PC) by blending commercial PC with a low molecular weight PC oligomer. The oligomer was synthesized by the addition of a large quantity of mono functional phenol groups, and the chain end group was reacted with p-tertiary butyl phenol (PTBP) to block the reactivity. The viscosity average molecular weight ($M_v$) for the oligomer was about 4,000-5,000 g/mol, compared to ~19,000 g/mol for the PC blend obtained by blending 10 wt% of the prepared oligomer with the commercial grade PC ($M_v$ of 21,000 g/mol). The blended PC had a melt flow index of 45, which is 2.5 times higher, and a processing temperature that was $20^{\circ}C$ lower, than that of commercial grade PC having a similar $M_v$.
Keywords
PC; PC oligomer; blend; high flow; viscosity;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 H. T. Pham, S. Munjal, and C. P. Bosnyak, in Handbook of thermoplastics, O. Olabisi, Ed., Marcel Dekker, New York, 1997
2 T. M. Madkour, in Polymer data handbook, J. E. Mark, Ed., Oxford University Press, New York, 1999
3 H. T. Pham, C. L. Weckle, and J. M. Ceraso, Adv. Mater., 12, 1881 (2000)   DOI   ScienceOn
4 T. T Hsieh, C. Tiu, K. H. Hsieh, and G. P. Simon, J. Appl. Polym. Sci., 77, 2319 (2000)   DOI   ScienceOn
5 C. Liu, C. Li, P. Chen, J. He, and Q. Fan, Polymer, 45, 2803 (2004)   DOI   ScienceOn
6 G. G. Liang, W. D. Cook, H. J. Sautereau, and A. Tcharkhtchi, Eur. Polym. J., 44, 366 (2008)   DOI   ScienceOn
7 E. Yoshida and M. Nakamora, Polym. J., 30, 915 (1998)   DOI   ScienceOn
8 S. Munjai, Polym. Eng. Sci., 34, 93 (1994)   DOI   ScienceOn
9 M. Okamoto, Polymer, 42, 8355 (2001)   DOI   ScienceOn
10 S. Li, P. K. Jarvela, and P. A. Jarvela, J. Appl. Polym. Sci., 71, 1649 (1999)
11 V. Marousek, P. Svoboda, and J. Kralicek, Angew Makromol. Chem., 178, 85 (1990)   DOI
12 L. Jiang, Y. C. Lam, and J. Zhang, J. Polym. Sci. Part B: Polym. Phys., 43, 2683 (2005)   DOI   ScienceOn
13 J. Kroschwitz, in Encyclopedia of polymer science and engineering, Wiley, New York, 1985
14 H. Schnell, in Chemistry and physics of PC, Interscience, New York, 1964
15 C. Nguyen and J. Kim, Macromol. Res., 16, 620 (2008)   DOI
16 L. P. Fontana, K. F. Miller, A. A. Clasen, P. W. van Es, T. O. N. de Vroomen, C. B. Quinn, and R. W. Campbell, U. S. Pat. 5,321,114 (1994)
17 E. Ranucci and P. Ferruti, Macromolecules, 24, 3747(1991)   DOI
18 H. T. Pham, C. P. Bosnyak, J. W. Wilchester, and C. P. Christenson, J. Appl. Polym. Sci., 48, 1425 (1993)   DOI   ScienceOn