• 제목/요약/키워드: Polyethylene fiber

검색결과 268건 처리시간 0.026초

일정축력을 받는 고인성 섬유보강 시멘트 복합체 기둥의 거동 (An Behavior of RC Columns Using High Performance Fiber Reinforced Cement Composites under Axial Loads)

  • 황선경;윤현도;한병찬;박완신;양일승;전 에스더
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 봄학술 발표회 논문집(I)
    • /
    • pp.87-90
    • /
    • 2005
  • An experimental investigation on the strength and behaviour of reinforced concrete columns using high performance fiber reinforced cement composites has been carried out. The columns were subjected to monotonic axial compression until failure. The variables in this study are the combination ratio of steel cord(SC) and Polyethylene (PE), and the volumetric ratio of transverse reinforcement Test results showed that the fibers, when used in a hybrid form, could result in superior composite performance compared to their individual fiber reinforced cement composites.

  • PDF

재하속도에 따른 고성능 섬유보강 시멘트 복합체의 역학적 특성 (Effect of Strain Rate on the Mechanical Properties of High Performance Fiber-Reinforced Cementitious Composites)

  • 윤현도;양일승;한병찬;복산양;전에스더;김선우
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 추계 학술발표회 제16권2호
    • /
    • pp.29-32
    • /
    • 2004
  • An experimental investigation of the behavior of steel cords(SC) and SC and Polyethylene(PE) hybrid fiber reinforced cementitious material under compressive and tensile loading is presented. In this experimental research, the tensile and compressive strength and strain capacity of high performance fiber-reinforced cementitious composites(HPFRCC) were selected using the cylindrical specimens. Uniaxial compressive and tensile tests have also been carried out at varying strain rates to better understand the behavior of. HPFRCC and propose the standard loading rate for compressive and tensile tests of new HPFRCC materials. The results show that there is a substantial increase in the ultimate compressive and tensile strength with increasing strain rate.

  • PDF

Fracture resistance of endodontically treated maxillary premolars restored by silorane-based composite with or without fiber or nano-ionomer

  • Shafiei, Fereshteh;Tavangar, Maryam Sadat;Ghahramani, Yasamin;Fattah, Zahra
    • The Journal of Advanced Prosthodontics
    • /
    • 제6권3호
    • /
    • pp.200-206
    • /
    • 2014
  • PURPOSE. This in vitro study investigated the fracture resistance of endodontically treated premolars restored using silorane-or methacrylate-based composite along with or without fiber or nano-ionomer base. MATERIALS AND METHODS. Ninety-six intact maxillary premolars were randomly divided into eight groups (n = 12). G1 (negative control) was the intact teeth. In Groups 2-8, root canal treatment with mesio-occlusodistal preparation was performed. G2 (positive control) was kept unrestored. The other groups were restored using composite resin as follows: G3, methacrylate-based composite (Z250); G4, methacrylate composite (Z250) with polyethylene fiber; G5 and G6, silorane-based composite (Filtek P90) without and with the fiber, respectively; G7 and G8, methacrylate-and silorane-based composite with nano-ionomer base, respectively. After aging period and thermocycling for 1000 cycles, fracture strength was tested and fracture patterns were inspected. The results were analyzed using ANOVA and Tukey HSD tests (${\alpha}$=0.05). RESULTS. Mean fracture resistance for the eight groups (in Newton) were G1: $1200{\pm}169^a$, G2: $360{\pm}93^b$, G3: $632{\pm}196^c$, G4: $692{\pm}195^c$, G5: $917{\pm}159^d$, G6: $1013{\pm}125^{ad}$, G7: $959{\pm}148^d$, G8: $947{\pm}105^d$ (different superscript letters revealed significant difference among groups). Most of the fractures in all the groups were restorable, except Group 3. CONCLUSION. Silorane-based composite revealed significantly higher strength of the restored premolars compared to that of methacrylate one. Fiber insertion demonstrated no additional effect on the strength of both composite restorations; however, it increased the prevalence of restorable fracture of methacrylate-based composite restored teeth. Using nano-ionomer base under methacrylate-based composite had a positive effect on fracture resistance and pattern. Only fiber-reinforced silorane composite restoration resulted in a strength similar to that of the intact teeth.

섬유로프 계류시스템의 크리프 효과가 부유체의 운동응답 및 계류선의 장력 변화에 미치는 영향에 관한 연구 (A Study on Creep Effect of Synthetic Fiber Rope Mooring System on Motion Response of Vessel and Tension of Mooring Line)

  • 박성민;이승재;강수원
    • 대한조선학회논문집
    • /
    • 제54권2호
    • /
    • pp.151-160
    • /
    • 2017
  • Growing demand and rapid development of the synthetic fiber rope in mooring system have taken place since it has been used in deep water platform lately. Unlike a chain mooring, synthetic fiber rope composed of lightweight materials such as Polyester(polyethylene terephthalate), HMPE(high modulus polyethylene) and Aramid(aromatic polyamide). Non-linear stiffness and another failure mode are distinct characteristics of synthetic fiber rope when compared to mooring chain. When these ropes are exposed to environmental load for a long time, the length of rope will be increased permanently. This is called 'the creep phenomenon'. Due to the phenomenon, The initial characteristics of mooring systems would be changed because the length and stiffness of the rope have been changed as time goes on. The changed characteristics of fiber rope cause different mooring tension and vessel offset compared to the initial design condition. Commercial mooring analysis software that widely used in industries is unable to take into account this phenomenon automatically. Even though the American Petroleum Institute (API) or other classification rules present some standard or criteria with respect to length and stiffness of a mooring line, simulation guide considers the mechanical properties that is not mentioned in such rules. In this paper, the effect of creep phenomenon in the fiber rope mooring system under specific environment condition is investigated. Desiged mooring system for a Mobile Offshore Drilling Unit(MODU) with HMPE rope which has the highest creep is analyzed in a time domain in order to investigate the effects creep phenomenon to vessel offset and mooring tension. We have developed a new procedure to an analysis of mooring system reflecting the creep phenomenon and it is validated through a time domain simulation using non-linear mooring analysis software, OrcaFlex. The result shows that the creep phenomenon should be considered in analysis procedure because it affects the length and stiffness of synthetic fiber rope in case of high water temperature and permanent mooring system.

중공사형 한외여과 막분리 공정에 의한 하천수 처리 (Lake Water Treatment Using a Ultrafiltration Membrane Process of Hollow Fiber Type)

  • 박진용
    • 멤브레인
    • /
    • 제7권1호
    • /
    • pp.39-47
    • /
    • 1997
  • 자체적으로 설계한 막분리 장치 시스템을 사용하여 먼저 순수한 물(3차 처리수)을 대상으로 polysulfone 재질의 중공사형 한외여과막에 대한 분리 성능을 조사하였다. 분획분자량(Molecular cutoff) 5,000 및 10,000 두 종류의 한외여과막에 대하여 실험한 결과, 온도가 증가함에 따라 공급량에 대한 투과량의 비인 회수율이 증가하는 경향을 보였다. 또한, 다양한 분자량의 polyethylene glycol 및 dextran 2,000 ppm 수용액으로 분획분자량을 확인한 결과, 표시된 값보다 다소 큰 값을 얻을 수 있었다. 이러한 기초 실험결과를 토대로 하여, 최종적으로 생활하수의 유입으로 수질이 악화되고 있는 춘천시 공지천의 물을 처리 대상으로 선정하여 원수의 성분을 분석하고, 한외여과 실험을 실시하였다. 그 결과, 생물학적 산소요구량(BOD) 및 총고형물(TS), 탁도가 모두 처리수에서 원수보다 탁월한 감소를 나타내었다. 따라서, 중공사형 한외여과막을 사용한 생활하수 처리에 가능성을 본 연구를 통하여 확인할 수 있었다.

  • PDF

Slowly Odor-evaporating Polyethylene Film Containing Surface-modified Celite Powder

  • Chun Byoung Chul;Chung Yong-Chan;Park Hee-Woo;Han Ki Hwan
    • Fibers and Polymers
    • /
    • 제6권3호
    • /
    • pp.200-205
    • /
    • 2005
  • Celite powder surface-modified with cationic surfactant was used to make polyethylene (PE) specialty film that can be contrasted with ordinary film in having high odor storing capacity and long odor lasting period. Mechanical properties of the films were sacrificed as more celite particles were included, whether celite surface was modified or not. The film with CTAS-modified celite showed the best odor storing and lasting properties for five different flavors of odor, three artificial and two natural ones, among the kinds of films developed. Comparisons among the different films are made, together with brief discussion about the reason for differences in odor lasting period and possible application to packaging industry.

MA 그라프트 폴리에스테르직물의 염색성에 관한 연구 (A Study on Dyeability of Polyester Fabrics Grafted with Methacrylic Acid)

  • 백천의;조승식;송화순
    • 한국의류학회지
    • /
    • 제19권6호
    • /
    • pp.946-954
    • /
    • 1995
  • The purpose of this study is to modify the hydrophobic property and dyeability of polyethylene terephthalate fiber. Methacrylic acid (2nA) was graftpolymerized with benzoyl peroxide (BPO) as initiator onto polyethylene terephthalate fabrics. The results were as follow; 1. Graft-polymerization exhibited maximum graft ratio at a temperature of 100"C. 2. The polymer was gradually grafted in great amount to the surface of MA-g-PET as graft ration increase; with the cross-section examination of MA-g-PET, it was discovered that graft-polymeriation had also taken place inside the textile core. 3. Dyes absorption of basic dyes and disperse dyes was improved as craft ratio increase; with resistance to laundering, the former showed grade 3-4 and the latter showed grade 5.de 5.

  • PDF

Electrochemical and Safety Performances of Polyimide Nano fiber-based Nonwoven Separators for Li-ion Batteries

  • Kim, Yeon-Joo;Lee, Sang-Min;Kim, Seok Hong;Kim, Hyun-Soo
    • Journal of Electrochemical Science and Technology
    • /
    • 제6권1호
    • /
    • pp.26-33
    • /
    • 2015
  • In this study, cell performance and thermal stability of lithium-ion cells with a polyimide (PI) separator are investigated. In comparison to conventional polyethylene (PE) separator, the PI separator exhibits distinct advantage in microporous structure, leading to superior reliability of the cell. The cells with PI separator exhibit good cell performances as same as the cells with PE separator, but their reliability was superior to the cell with PE separator. Especially in the hot-box test at 150 and 180℃, PI separator showed a contraction percentage close to 0% at 150℃, while the PE separator showed a contraction percentage greater than 10% in both width and length. Therefore, the PI separator can be the promising candidate for separators of the next generation of lithium-ion battery.

Effect of Temperature on Frequency and Damping Properties of Polymer Matrix Composites

  • Colakoglu, M.
    • Advanced Composite Materials
    • /
    • 제17권2호
    • /
    • pp.111-124
    • /
    • 2008
  • The effect of temperature on natural frequency and damping is investigated in two different composite materials, Kevlar 29 fiber woven and polyethylene cloth, used especially to design ballistic armor. A damping monitoring method is used experimentally to measure the frequency response curve and it is also modeled numerically using a finite element program. The natural frequencies of a material, or a system, are a function of its elastic properties, dimensions and mass. This concept is used to calculate theoretical vibration modes of the composites. The damping properties in terms of the damping factor are determined by the half-power bandwidth technique. Numerically analyzed and experimentally measured time response curves are compared. It is seen that polymer matrix composites have temperature dependent mechanical properties. This relationship is functional and they have different effects against temperature.

안트라퀴논계 초소수성 네이비 염료를 이용한 초고분자량 폴리에틸렌 섬유의 염색 (Dyeing of Ultra High Molecular Weight Polyethylene Fiber Using Anthraquinoid Super-hydrophobic Navy Dyes)

  • 김태경;마희정
    • 한국염색가공학회지
    • /
    • 제31권2호
    • /
    • pp.98-106
    • /
    • 2019
  • The dyeability and fastness properties of super-hydrophobic navy dyes having different length of alkyl groups were investigated on ultra high molecular weight polyethylene fabrics. Those dyes exhibited strong color strength in the wavelength of mainly 550~650nm, which meant that they were navy color. From the results accomplished under various dyeing conditions, it can be concluded that those dyes have higher affinity on the fibers at $130^{\circ}C$ than at the lower dyeing temperature. Considering processing time and thermal damage of the fibers, one hour is good enough to obtain full strength of color. Maximum color strength was obtained at 2~3%owf of pure dyes. Except for the rub fastness under dry condition, all fastness such as to washing and light showed as good as of 4~5 ratings.