Browse > Article
http://dx.doi.org/10.5229/JECST.2015.6.1.26

Electrochemical and Safety Performances of Polyimide Nano fiber-based Nonwoven Separators for Li-ion Batteries  

Kim, Yeon-Joo (Battery Research Center, Korea Electrotechnology Research Institute)
Lee, Sang-Min (Battery Research Center, Korea Electrotechnology Research Institute)
Kim, Seok Hong (R&D Center, Finetex EnE)
Kim, Hyun-Soo (Battery Research Center, Korea Electrotechnology Research Institute)
Publication Information
Journal of Electrochemical Science and Technology / v.6, no.1, 2015 , pp. 26-33 More about this Journal
Abstract
In this study, cell performance and thermal stability of lithium-ion cells with a polyimide (PI) separator are investigated. In comparison to conventional polyethylene (PE) separator, the PI separator exhibits distinct advantage in microporous structure, leading to superior reliability of the cell. The cells with PI separator exhibit good cell performances as same as the cells with PE separator, but their reliability was superior to the cell with PE separator. Especially in the hot-box test at 150 and 180℃, PI separator showed a contraction percentage close to 0% at 150℃, while the PE separator showed a contraction percentage greater than 10% in both width and length. Therefore, the PI separator can be the promising candidate for separators of the next generation of lithium-ion battery.
Keywords
polyimide (PI); polyethylene (PE); electrospun fibrous membrane; lithium battery; separator; thermal shrinkage;
Citations & Related Records
연도 인용수 순위
  • Reference
1 K. Morigaki, N. Kabuto, and K. Haraguchi, Matsushita Electric Industrial, US Patent 5597659, issued Jan. 28, 1997.
2 K. Abraham, M. Alamgir, and D. Hoffman, J. Electrochem. Soc., 142, 683 (1995).   DOI
3 D. Kim, K. Noh, J. Chun, S. Kim, and J. Ko, Solid State Ionics, 144, 329 (2001).   DOI
4 Y. Wang, J. Travas-Sejdic, and R. Steiner, Solid State Ionics, 148, 443 (2002).
5 F. Ooms, E. Kelder, J. Schoonman, N. Gerrits, J. Smedinga, and G. Callis, J. Power Sources, 97, 598 (2001).
6 Y. Miaoa, G. Zhub, H. Houc, Y. Xiab, and T. Liua, J. Power Sources, 226, 82 (2013).   DOI
7 L. Carnell, E. Siochi, N. Holloway, R. Stephens, C Rhim, L. Niklason, and R. Clark, Macromolecules, 5345, 14 (2008).
8 D. Chen, T. Liu, X. Zhou, W. Tjiu, and H. Hou, J. Phys. Chem., B, 113, 9741 (2009).
9 A. Christie, S. Lilley, E. Staunton, Y. Andreev, and P. Bruce, Nature, 433, 50 (2005).   DOI
10 A. M. Stephan, Europ. Polymer J., 42, 21 (2006).   DOI
11 D. Chen, R. Wang, W. Tjiu, and T. Liu, Compos. Sci. Technol., 71, 1556 (2011).   DOI
12 Y. Kim, H. Kim, C. Doh, S. Kim, and S. Lee. J. Power Sources, 244, 196 (2013).   DOI
13 P. Ma and R. Zhang, J. Biomedical Mater. Resear., 46, 60 (1999).   DOI
14 D. Reneker and I. Chun, Nanotechnology, 7, 216 (1996).   DOI
15 Y. Kim, H. Kim, C. Doha, S. Kim, and S. Lee, J. Power Sources, 244, 196 (2013).   DOI
16 F. Croce, G.B. Appetecchi, L. Persi, and B. Scrosati, Nature, 394, 456 (1998).   DOI
17 G. Venugopal, J. Moore, J. Howard, and S. Pendalwar, J. Power Sources, 77, 34 (1999).   DOI
18 B.L. Luan, G. Campbell, M. Gauthier, X.Y. Liu, I. Davidson, J. Nagata, M. Lepinay, F. Bernier, S. Argue, ECS Transactions, 25, 59 (2010).
19 R.J. Brodd, H.M. Friend, J.C. Nardi, Lithium Ion Battery Technology, ITE-JEC Press, 1995.
20 U. von Sacken, E. Nodwell, A. Sundher, and J.R. Dahn, Solid State Ionics, 69, 284 (1994).   DOI
21 U. von Sacken, E. Nodwell, A. Sundher, and J. Dahn, Solid State Ionics, 69, 284 (1994).   DOI
22 S. Tobishima and J. Yamaki, J. Power Sources, 81, 882 (1999).
23 J. Yamaki, in: M. Wakihara, O. Yamamoto (Eds.), Lithium Ion Batteries, 83, Kodansha and Wiley-VCH, Tokyo, Japan (1998).
24 J. Cho, Y. Kim, T. Kim, and B. Park, Chem. Mater., 13, 18 (2001).   DOI
25 A. Dey, J. Electrochem. Soc., 118, 1547 (1971).   DOI
26 H. Kweon, S. Kim, and D. Park, J. Power Sources, 88, 255 (2000).   DOI
27 R. Leising, M. Palazzo, E. Takeuchi, and K. Takeuchi, J. Electrochem. Soc., 148, A838 (2001).   DOI