• Title/Summary/Keyword: Polyethylene Oxide

Search Result 186, Processing Time 0.035 seconds

Electrical and optical properties of ZnO:Al transparent conducting films deposited on flexible polymeric substrate (플렉시블한 폴리머 기판위에 증착된 ZnO:Al 투명전도막의 전기 및 광학적 특성)

  • Jessie, Darma;Park, Byung-Wook;Sung, Youl-Moon;Kwak, Dong-Joo
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1262-1263
    • /
    • 2008
  • Recently film-typed dye sensitized solar cell(DSC) attracts much attention with increasing applications for its flexibility and transparency. The ZnO:Al thin film, which serves mainly as transparent conducting electrode, Aluminium-doped zinc oxide(ZnO:Al) thin film has emerged as one of the most promising transparent conducting films since it is inexpensive, mechanically stable, and highly resistant to deoxidation. In this paper ZnO:Al thin film was deposited on the polyethylene terephthalate(PET) substrate by the capacitively coupled r. f. magnetron sputtering method. The effects of gas pressure and r. f. discharge power on the morphological, electrical and optical properties of ZnO:Al thin film were studied. Especially the variation in substrate thickness after sputtering and surface morphology of the substrate were investigated and clarified. The results showed that the film deposited on the PET substrate at r. f. discharge power of 180 W showed the minimum resistivity of about $1.5{\times}10^{-3}{\Omega}-cm$ and a transmittance of about 93%.

  • PDF

Effect of PTMGDA-PEGMA dopant on PVDF ultrafiltration membrane

  • Chen, Gui-E.;Huang, Hui-Hong;Xu, Zhen-Liang;Zhang, Ping-Yun;Wu, Wen-Zhi;Sun, Li;Liu, Yan-Jun
    • Membrane and Water Treatment
    • /
    • v.7 no.6
    • /
    • pp.539-553
    • /
    • 2016
  • As a novel hydrophobic monomer, polytetrahydrofuran diacrylate (PTMGDA) was synthesized by the esterification reaction between polyethylene tetrahydrofuran (PTMG) and acryloyl chloride (AC). In situ free radical polymerization reaction method was utilized to fabricate poly (vinylidene fluoride) (PVDF)-PTMGDA-poly(ethylene oxide) dimethacrylate (PEGMA) ulrafiltration (UF) membranes. The performances of PVDF-PTMGDA-PEGMA UF membranes in terms of morphologies, mechanical properties, separation properties and hydrophilicities were investigated. The introduction of the PTMGDA-PEGMA dopants not only increased the membranes' pure water flux, but also improved their mechanical properties and the dynamic contact angles. The addition of the PTMGDA/PEGMA dopants led to the formation of the finger-like structure in the membrane bulk. With the increase concentration of PTMGDA/PEGMA dopants, the porosity and the mean effective pore size increased. Those performances were coincide with the physicochemical properties of the casting solutions.

High rate deposition and mechanical properties of SiOx film on PET and PC polymers by PECVD with the dual frequencies UHF and HF at low temperature

  • Jin, Su-B.;Choi, Yoon-S.;Choi, In-S.;Han, Jeon-G.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.180-180
    • /
    • 2010
  • The design and implementation of high rate deposition process and anti-scratch property of silicon oxide film by PECVD with UHF power were investigated according to the effect of UHF input power with HF bias. New regime of high rate deposition of SiOx films by hybrid plasma process was investigated. The dissociation of OMCTS (C8H24Si4O4) precursor was controlled by plasma processes. SiOx films were deposited on polyethylene terephthalate (PET) and polycarbonate substrate by plasma enhanced chemical vapor deposition (PECVD) using OMCTS with oxygen carrier gas. As the input energy increased, the deposition rate of SiOx film increased. The plasma diagnostics were performed by optical emission spectrometry. The deposition rate was characterized by alpha-step. The mechanical properties of the coatings were examined by nano-indenter and pencil hardness, respectively. The deposition rate of the SiOx films could be controlled by the appropriate intensity of excited neutrals, ionized atoms and UHF input power with HF bias at room temperature, as well as the dissociation of OMCTS.

  • PDF

코어-쉘 나노입자를 이용한 메모리 소자에서 쉘의 유무에 따른 전도도 특성 및 전하수송 메커니즘

  • Yun, Dong-Yeol;Ryu, Jun-Jang;Kim, Tae-Hwan;Kim, Sang-Uk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.300.1-300.1
    • /
    • 2014
  • 유기물 박막에 나노입자가 분포되어 있는 나노복합체를 이용한 전자 소자는 낮은 소비 전력, 낮은 공정 가격, 그리고 높은 기계적 휘어짐이 가능하기에 차세대 전자 소자로 많은 연구가 진행되고 있다. 친환경 소자를 지향하는 현대 기술에서 환경 친화적 코어-쉘 구조의 나노입자를 이용한 나노복합체는 차세대 전자 소자 중 비휘발성 메모리 소자 연구에서 뛰어난 소자 성능을 보여주고 있어 큰 관심을 받고 있으나 코어-쉘 나노입자를 이용한 비휘발성 메모리 소자의 쉘의 유무에 따른 전도도 특성 및 전하수송 메커니즘 연구는 아직 미미한 실정이다. 본 연구에서는, indium-tin-oxide가 코팅된 polyethylene terephthalate 기판 위에 CuInS2 (CIS)-ZnS 친환경 코어-쉘 나노입자가 poly (methylmethacrylate) (PMMA) 안에 분산된 박막을 이용한 비휘발성 메모리 소자를 제작하여 ZnS 쉘이 전기적 전도도에 미치는 영향을 관찰 하였다. CIS-ZnS 코어-쉘 나노입자에서 ZnS 쉘이 없어도 메모리 소자의 전류-전압 특성에서는 높은 전도도 (ON)와 낮은 전도도 (OFF) 상태가 존재하는 전류 쌍안정성 동작을 보이지만, ZnS 쉘의 유무에 따라 ON/OFF 비율 차이를 보여 전도도 특성이 다름을 관측 하였다. 반복된 전계적 스트레스에 의한 전도도 상태 유지 능력 측정을 수행하여 ZnS 쉘의 유무에 따른 소자의 전도도 안정성 능력을 관측하였다. 측정된 전기적 특성을 기반으로 PMMA 박막 안에 분산된 CIS-ZnS 코어-쉘 나노입자를 이용한 비휘발성 메모리 소자에서 ZnS 쉘의 따른 전도도 특성 및 전하수송 메커니즘 특성을 설명하였다.

  • PDF

Fabrication of ZnO and CuO Nanostructures on Cellulose Papers

  • Nagaraju, Goli;Ko, Yeong Hwan;Yu, Jae Su
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.315.1-315.1
    • /
    • 2014
  • The use of cellulose papers has recently attracted much attention in various device applications owing to their natural advantageous properties of earth's abundance, bio-friendly, large-scale production, and flexibility. Conventional metal oxides with novel structures of nanorods, nanospindles, nanowires and nanobelts are being developed for emerging electronic and chemical sensing applications. In this work, both ZnO (n-type) nanorod arrays (NRAs) and CuO (p-type) nanospindles (NSs) were synthesized on cellulose papers and the p-n junction property was investigated using the electrode of indium tin oxide coated polyethylene terephthalate film. To synthesize ZnO and CuO nanostructures on cellulose paper, a simple and facile hydrothermal method was utilized. First, the CuO NSs were synthesized on cellulose paper by a simple soaking process, yielding the well adhered CuO NSs on cellulose paper. After that, the ZnO NRAs were grown on CuO NSs/cellulose paper via a facile hydrothermal route. The as-grown ZnO/CuO NSs on cellulose paper exhibited good crystalline and optical properties. The fabricated p-n junction device showed the I-V characteristics with a rectifying behaviour.

  • PDF

Experimental Investigation on the Drag Reduction for an Axi-symmetric Body by Micro-bubble and Polymer Solution

  • Yoon, Hyun-Se;Park, Young-Ha;Van, Suak-Ho;Kim, Hyung-Tae;Kim, Wu-Joan
    • Journal of Ship and Ocean Technology
    • /
    • v.8 no.1
    • /
    • pp.1-9
    • /
    • 2004
  • Experiments on friction drag reduction by injecting polymer (Polyethylene oxide) solution or micro-bubbles were carried out in the cavitation tunnel of KRISO. Two different drag reduction mechanisms were applied to a slender axi-symmetric body to measure the total drag reduction. And then the amount of friction drag reduction was estimated under the assumption that the reduction mechanisms were effective only to the friction drag component. As the result of the tests, polymer solution drag reduction up to 23% of the total drag was observed and it corresponds to about 35% of the estimated friction drag of the axi-symmetric body. This result matched reasonably well to that of the flat plate test "(Kim et al, 2003)". The normalization of the controlling parameters was tried at the end of this paper. Micro-bubble drag reduction was within 1% of its total drag. This unexpected result was quite different from that of the flat plate case "(Kim et at, 2003)" The possible reasons were discussed in this paper.

TiO2 Nanotubes Fabricated by Atomic Layer Deposition for Solar Cells

  • Jung, Mi-Hee;Kang, Man-Gu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.161-161
    • /
    • 2011
  • Titanium (IV) dioxide (TiO2) is one of the most attractive d-block transition metal functional oxides. Many applications of TiO2 such as dye-sensitized solar cells and photocatalyst have been widely investigated. To utilize solar energy efficiently, TiO2 should be well-aligned with a high surface area and promote the charge separation as well as electron transport. Herein, the TiO2 nanotubes were successfully fabricated by a template-directed method. The electrospun PEO(Polyethylene oxide, Molecular weight, 400k)fibers were used as a soft template for coating with titanium dioxide using an atomic layer deposition (ALD) technique. The deposition was conducted onto a template at 50$^{\circ}C$ by using titaniumisopropoxide [Ti(OCH(CH3)2)4; TTIP] as precursors of TiO2. While the as-deposited TiO2 layers onto PEO fibers were completely amorphous with atomic layer deposition, the TiO2 layers after calcination at 500$^{\circ}C$ for 1 h were properly converted into polycrystalline nanostructured hallow TiO2 nanotube. The TiO2 nanotube with high surface area can be easily handled and reclaimed for use in future applications related to solar cell fabrications.

  • PDF

Etchless Fabrication of Cu Circuits Using Wettability Modification and Electroless Plating (젖음성 차이와 무전해도금을 이용한 연성 구리 회로패턴 형성)

  • Park, Sang-Jin;Ko, Tae-Jun;Yoon, Juil;Moon, Myoung-Woon;Han, Jun Hyun
    • Korean Journal of Materials Research
    • /
    • v.25 no.11
    • /
    • pp.622-629
    • /
    • 2015
  • Cu circuits were successfully fabricated on flexible PET(polyethylene terephthalate) substrates using wettability difference and electroless plating without an etching process. The wettability of Cu plating solution on PET was controlled by oxygen plasma treatment and $SiO_x$-DLC(silicon oxide containing diamond like carbon) coating by HMDSO(hexamethyldisiloxane) plasma. With an increase of the height of the nanostructures on the PET surface with the oxygen plasma treatment time, the wettability difference between the hydrophilicity and hydrophobicity increased, which allowed the etchless formation of a Cu pattern with high peel strength by selective Cu plating. When the height of the nanostructure was more than 1400 nm (60 min oxygen plasma treatment), the reduction of the critical impalement pressure with the decreasing density of the nanostructure caused the precipitation of copper in the hydrophobic region.

Improvement of Binding Property of the Alg-Na/PEO Blends (PEO를 이용한 Alg-Na 바인더의 물성향상)

  • Park, Yong Wan;Kim, Eui Hwa;Cho, Ho Hyun
    • Textile Coloration and Finishing
    • /
    • v.26 no.1
    • /
    • pp.32-38
    • /
    • 2014
  • There has been increasing demand to the eco-friendly materials such as phytoncide which is extracted to plants in the textile industry, recently. It is interesting that alginic acid sodium salt(Alg-Na) is used to eco-friendly binder for the functional capsule finishing. In this study, we made PEO/Alg-Na blend solutions of various ratio and observed the changing binding property of the blend solutions according to PEO contents through FT-IR, DSC, contact angle, peel strength, etc. The viscosity of Alg-Na/PEO blend solutions increased with increase of contents and the viscosity quickly increased with increase of PEO content in Alg-Na 5% content, specially. It is shown that the hydrogen bond peak by blend of Alg-Na and PEO found through FT-IR analysis but the peak decreased in PEO above 60% content. And the peel strength was predominant in PEO 50% ratio.

A Study on the Explosive Plugging of A Repair for Defective Tube/Tubeplate on the Nuclear Steam Generator (원자력 증기발생기 결함 세관 보수용 폭발 Plugging에 관한 연구)

  • 이병일;심상한;강정윤;이상래
    • Explosives and Blasting
    • /
    • v.17 no.4
    • /
    • pp.18-31
    • /
    • 1999
  • The explosive forming has been used for many year to expand tubes into tubesheets. this process has demonstrated ability to direct carefully the energy of an explosive to expand tubes into tubesheet holes without damaging the tubesheet and without causing the excessive cold work at the tube I.D. that is normally associated with mechanical expansion. The success of explosive tube expansion provided the background for the development of the explosive tube plug. The main results are as follows : (1) The optimum explosives and explosive qualities are PETN, RDX, HMS and about 18~31gr/ft of explosive plugging in nuclear steam generator. (2) Explosive plugging's thickness is 0.9~1.8mm. If groove of 0.4 mm formed in plug outside, For the hydraulic leakage is go up, explosive plugging of formed groove are applicate tube and tubrplate. (3) Sheath is designed on the polyethylene of low density, In thermal impact test of the $430^\circ{C}$, hydraulic leakage is $300kg/cm^2$. (4) About 10~60mm oxide inclusions are existed on the space of explosive plug and tube protect to the leakage.

  • PDF