• Title/Summary/Keyword: Polyethylene(PE)

Search Result 521, Processing Time 0.034 seconds

Effect of Heat Conservation of Greenhouse Film on Growth and Quality in Oriental Melon (필름두께 및 적외선 흡수율 차이가 참외의 품질 및 수량에 미치는 영향)

  • Shin, Yong-Seub;Yeon, Il-Kweon;Do, Han-Woo;Lee, Ji-Eun;Cheung, Jong-Do;Kang, Chan-Ku;Choi, Chung-Don;Chun, Hee;Choi, Young-Ha;Chung, Doo-Seok
    • Journal of Bio-Environment Control
    • /
    • v.16 no.3
    • /
    • pp.167-173
    • /
    • 2007
  • This study was conducted to improve light environment of oriental melon cultivation in winter season. Three polyolefin foreign films (J-1, J-2, J-3) and three polyethylene domestic films (K-1, K-2, K-3) with different film thickness, ultraviolet ray interception and infrared ray absorption were used. As the result of this experiment, soluble solid of oriental melon fruit in K-3 was $14.3^{\circ}Brix$, those in J-3 and J-2 were higher by 1.3 and $0.8^{\circ}Brix$, respectively. Chromaticity (a value) of pericarp in K-3 was 0.5, those in J-3, J-1 and J-2 were higher by 3.3, 2.3 and 1.9, respectively. Especially, fermented and malformed fruit rates in J-1, J-2 and J-3 were decreased and marketable fruit rates were increased. Marketable yield in K-3 was 1,622 kg per 10a, those in J-1, J-3 and J-2 were increased by 31.2%, 23.8% and 18.5% compare to K-3, respectively. In this study, Polyolefin films (J-1, J-2, J-3) with thickness and infrared ray absorption ratio keeping higher heat conservation, therefore, soluble solid and chromaticity of fruit were increased, fermented fruit rate was decreased, and marketable fruit rate and yield were increased.

Characterization and Seawater Filtration Performance of Commerical Microfiltration and Ultrafiltration Membranes (상업용 정밀여과/한외여과막의 특성 분석 및 해수 여과 성능 평가)

  • Choi, Changkyoo;Kim, In S.
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.9
    • /
    • pp.542-547
    • /
    • 2017
  • This paper was to analyze the membrane characterization of hydrophilicity, surface morphology and membrane chemical anlysis of three commercial microfiltration/ultrafiltration membranes, and evaluate the filtration performance of a seawater to assess the availability for pretreatment of desalination process. From the results of contact angle, Mem-3, fabricated with polyacrylonitrile, was highly hydrophilic. It find out that Mem-3 has more anti-biofouling property. In Field emission scanning electron microscope (FESEM), Mem-1 (polyethylene) and Mem-2 (Polyvinylidenefluoride) showed the sponge-like shape and Mem-3 showed finger-like shape. Membrane chemical analysis by energy dispersive spectrometer (EDS) presented that Mem-2 was mostly fluoride and Mem-3 had s high ratio of N (32.47%) due to the nitrile group. The permeation flowrate per time on suction pressures using deionized water (D.I. water) tends that permeation rate of Mem-3 more increased when the pressure was increased compared to other membranes. From the results of turbidity and total suspended solids (TSS) removal, turbidity of permeate was 0.191 NTU to 0.406 NTU and TSS was 2.2 mg/L to 3.0 mg/L in all membranes, indicating that it was not suitable for the pretreatment of seawater desalination by short-term experiments.

Copolymerization of Ethylene and 1-Hexene via Polymethylene Bridged Cationic Dinuclear Constrained Geometry Catalysts (폴리메틸렌 다리로 연결된 양이온 이핵 CGC를 이용한 에틸렌과 1-헥센의 공중합)

  • Bian, Feng Ling;Que, Dang Hoang Dan;Lyoo, Won-Seok;Lee, Dong-Ho;Noh, Seok-Kyun;Kim, Yong-Man
    • Polymer(Korea)
    • /
    • v.31 no.6
    • /
    • pp.497-504
    • /
    • 2007
  • We have prepared the dinuclear half-sandwich CGC(constrained geometry catalyst) with polymethylene bridge $[Zr(({\eta}^5\;:\;{\eta}^1-C_9H_5SiMe_2NCMe_3)Me_2)_2\;[(CH_2)_n]$ [n=6(4), 9(5), 12(6)] by treating 2 equivalents of MeLi with the corresponding dichlorides compounds. To study the catalytic behavior of the dinuclear catalysts we conducted copolymerization of ethylene and 1-hexene in the presence of three kinds of boron cocatalysts, $Ph_3C^+[B(C_6F_5)_4]^-\;(B_1),\;B(C_6F_5)_3\;(B_3)$, and $Ph_3C^+[(C_6F_5)_3B-C_6F_4-B(C_6F_5)_3]^{2-}\;(B_2)$. It turned out that all active species formed by the combination of three dinuclear CGCs with three cocatalyst were very efficient catalysts for the polymerization of olefins. The activities increase as the bridge length of the dinuclear CGCs increases. At the same time the dinuclear cocatalyst exhibited the lowest activity among three cocatalysts. The prime observation is that the dinuclear cocatalyst gave rise to the formation of the copolymers with the least branches on the polyethylene backbone.

Changes in Growths of Tomato and Grafted Watermelon Seedlings and Allometric Relationship among Growth Parameters as Affected by Shading During Summer (여름철 차광처리에 따른 토마토묘와 수박 접목묘의 생육과 생육지표간 상대적 관계)

  • Kang, Yun-Im;Kwon, Joon-Kook;Park, Kyoung-Sub;Yu, In-Ho;Lee, Si-Young;Cho, Myeong-Whan;Kang, Nam-Jun
    • Journal of Bio-Environment Control
    • /
    • v.19 no.4
    • /
    • pp.275-283
    • /
    • 2010
  • This study was conducted to examine the changes in growths of tomato and watermelon seedlings and the relationship among growth parameters which are used to evaluate healthy seedling as affected by shading. Plants were grown under 0%, 25%, 50%, and 75% shadings using polyethylene films. Leaf area index (LAI) of tomato and grafted watermelon seedlings increased under 50% and 75% shading. Total dry weight decreased with increase of shading level. The growth rates of stem diameter, LAI, total weight were faster under 50% and 75% shading with increase of integral radiation than under 0% and 25% shading. Stem diameters of tomato and grafted watermelon seedlings showed no significant differences among shading regimes. Stem diameters of tomato seedlings had upward tendency with increase of total dry weight and shoot height, but there were no significant differences among shading regimes. Stem diameters of grafted watermelon seedlings had no relationship with shoot height. These results indicate that stem diameter of tomato seedlings is not appropriate for assessing seedlings quality but stem diameter of grafted watermelon seedlings with shoot height is available.

Effect of Light Emitting Diode and Fluorescent Light on Volatile Profiles of Soybean Oil during Storage (콩기름 저장 중 휘발성분에 대한 LED와 형광등 광원 조사의 영향)

  • Park, In-Seon;Choi, Duck-Joo;Youn, Aye-Ree;Lee, Youn-Jung;Kim, Youn-Kyeong;Kim, Mun-Ho;Choi, So-Rye;Kim, Ki Hwa;Dong, Hyemin;Han, Hyun Jung;Noh, Bong Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.45 no.6
    • /
    • pp.763-769
    • /
    • 2013
  • Soybean oil was stored in polyethylene for 12 weeks at $20^{\circ}C$. The influence of LED (light emitting diode) irradiation on four different wavelengths and fluorescent light was investigated. The pattern changes of volatile components in soybean oil was analyzed by electronic nose based on mass spectrometer. The obtained data from electronic nose were analyzed by discrimination function analysis. Under fluorescent light, the discriminant function first score (DF1) was significantly moved from positive position to negative one after 4-12 weeks. It means that the volatile compounds related to quality of lipid. It was shown to increase slowly due to green light of LED treatment, while blue and white LED light was influenced significantly as well as fluorescent light irradiation. Selection of LED irradiation would provide to keep good quality of soybean oil under distribution chain system.

A Study on the Effect of Different Functional Groups in Anion Exchange Membranes for Vanadium Redox Flow Batteries (바나듐 산화환원 흐름전지를 위한 음이온교환막의 관능기에 따른 특성 연구)

  • Lee, Jae-Myeong;Lee, Mi-Soon;Nahm, Ki-Seok;Jeon, Jae-Deok;Yoon, Young-Gi;Choi, Young-Woo
    • Membrane Journal
    • /
    • v.27 no.5
    • /
    • pp.415-424
    • /
    • 2017
  • Commonly cation exchange membranes have been used for vanadium redox flow batteries. However, a severe vanadium ion cross-over causes low energy efficiency. Thus in this study, we prepared 3 different anion exchange membranes to investigate the effect on the membrane properties such as vanadium ion cross-over and long term stability. The base membranes were prepared by an electrolyte pore filling technique using vinyl benzyl chloride (VBC), divinylbenzene (DVB) within a porous polyethylene (PE) substrate. Then 3 different functional amines were introduced into the base membranes, respectively. These resulting membranes were evaluated by physico-chemical properties such as ion exchange capacity, dimensional stability, vanadium ion cross-over and membrane area resistance. Conclusively, TEA-functionalized membrane showed longest term stability than other membranes although all the membranes are similar to coulombic efficiency.

Performance Evaluation Criteria for Safety Helmets of Forest Firefighting Crews (산불진화대원용 안전헬멧에 대한 성능평가 기준 연구)

  • Hong, Seung-Tae;Jeong, Jae-Han;Kim, Sung Yong;Kwon, ChunGeun
    • Fire Science and Engineering
    • /
    • v.33 no.5
    • /
    • pp.66-77
    • /
    • 2019
  • To secure the safety and improve the work efficiency of forest firefighting crews, performance evaluation criteria for safety helmets were developed in this study. Because the standards for forest firefighting safety helmets are not available in Korea, we began our study based on the standards for firefighting safety helmets used by the Korea Fire Institute (KFI). Eleven test items were selected excluding 15 other items out of the 26 test items that, through the consultation of stakeholders and the review of foreign standards, were initially included in our study. Two types of general safety helmets and one firefighting helmet were tested by applying KFI standards, and the results were compared. The general safety helmets did not meet the standards of the retention system and chin strap. Additionally, polyethylene and acrylonitrile butadiene styrene materials were found to be especially weak under heat conditions. We compared the criteria of KFI, International Standardization Organization (ISO) 16073, National Fire Prevention Association (NFPA) 1977, NFPA 1971, and British Standards European Norm (BS EN) 443, and finally selected 11 test items and their acceptance criteria suitable for the work environment of forest firefighting crews in Korea.

Evaluation on Spalling Properties of Ultra High Strength Concrete with Melting and Vaporization of Fiber (유기섬유의 용융 및 기화에 따른 초고강도 콘크리트의 폭렬 특성 평가)

  • Kim, Gyu-Yong;Choe, Gyeong-Cheol;Lee, Joo-Ha;Lee, Seung-Hoon;Lee, Tae-Gyu
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.2
    • /
    • pp.173-183
    • /
    • 2012
  • Recently, experimental studies to prevent explosive spalling based on spalling mechanism and addition of Polypropylene fiber in high strength concrete (HSC) are performed actively. However, with respect to ultra high strength concrete (UHSC), its compact internal structure is more difficult release vapor pressure at rapid rising temperature compared to HSC. Therefore, in this study, an experiment was conducted to evaluate spalling properties of UHSC using ${\Box}$ $100mm{\times}100{\times}H200mm$ rectangular specimen according to ISO-834 standard fire curve. With respect melting point of fiber, three fiber types of Polyethylene, Polypropylene, and Nylon fibers with melting temperature of $110^{\circ}C$, $165^{\circ}C$, and $225^{\circ}C$, respectively, were considered. Mixed fiber of 0.15% and 0.25% of concrete volume was used to consider spalling properties based on water vapor pressure release. Then, TGDTA test on fiber and FEM analysis were performed. The results showed that it is difficult to prevent initial spalling without loss of fiber mass even if fiber melting temperature is low. Also, in preventing thermal spalling, fiber that melts to rapidly create porosity within 10 minutes of fire is more effective than that of low melting temperature property of fiber.

Changes in Quality Parameters of Tomatoes Harvested at Different Mature Stages during Storage (수확시의 숙도에 따른 저온저장 중 토마토의 품질인자의 변화)

  • Choi, Jeong Hee;Jeong, Moon Cheol;Kim, Dongman
    • Food Science and Preservation
    • /
    • v.20 no.2
    • /
    • pp.151-157
    • /
    • 2013
  • This study was conducted to investigate the effect of mature stages on quality of Rafito tomatoes (Lycopersicon esculentum Mill.) during storage at low temperature. Tomatoes grown in greenhouse were harvested at three different mature stages (turning, pink, and red), packaged with a 30-${\mu}m$-thick polyethylene film, and then stored at 5 and $10^{\circ}C$, respectively. The changes in firmness, soluble solids content (SSC), titratable acidity (TA), colour, lycopene content, decay, and chilling injury were measured on a weekly basis. After three weeks of storage, chilling injury and decay were found to have individually occurred at 5 and $10^{\circ}C$, respectively. As there was little change in quality at $5^{\circ}C$, it was concluded that red tomatoes could maintain their good quality for two weeks. The normal postharvest ripening was inhibited in the turning and pink tomatoes during storage at $5^{\circ}C$. The turning and pink tomatoes showed improved quality after two-week storage at $10^{\circ}C$. In particular, the turning fruits showed the highest firmness throughout the storage period. Furthermore, the red colour, SSC/TA, and lycopene content of the turning fruits reached the same levels as with the red fruits after two-week storage at $10^{\circ}C$. These results suggest that red tomatoes should be stored at $5^{\circ}C$ to inhibit decay, and that the optimum temperature for early-harvested tomato (turning and pink) is $10^{\circ}C$ for the ripening process after harvest.

Development of Semi-basement Type Greenhouse Model for Energy Saving

  • Kim, Seoung Hee;Joen, Jong Gil;Kwon, Jin Kyeong;Kim, Hyung Kweon
    • Journal of Biosystems Engineering
    • /
    • v.41 no.4
    • /
    • pp.328-336
    • /
    • 2016
  • Purpose: The heat culture areas of greenhouses have been continuously increasing. In the face of international oil price fluctuations, development of energy saving technologies is becoming essential. To save energy, auxiliary heat source and thermal insulation technologies are being developed, but they lack cost-efficiency. The present study was conducted to save energy by developing a conceptually new semi-basement type greenhouse. Methods: A semi-basement type greenhouse, was designed and constructed in the form of a three quarter greenhouse as a basic structure, which is an advantageous structure to inflow sunlight. To evaluate the performance of the developed greenhouse, a similar structured general greenhouse was installed as a control plot, and heating tests were conducted under the same crop growth conditions. Results: Although shadows appeared during the winter in the semi-basement type greenhouse due to the underground drop, the results of crop growth tests indicated that there were no differences in crop growth and development between the semi-basement type greenhouse and the control greenhouse, indicating that the shadows did not affect the crop up to the height of the crop growing point. The amount of fuel used for heating from January to March was almost the same between the two greenhouses for tests. The heating load coefficients of the experimental greenhouses were calculated as $3.1kcal/m^2{\cdot}^{\circ}C{\cdot}h$ for the semi-basement type greenhouse and $2.9kcal/m^2{\cdot}^{\circ}C{\cdot}h$ for the control greenhouse. Since the value is lower than the double layer PE (polyethylene) film greenhouse value of $3.5kcal/m^2{\cdot}^{\circ}C{\cdot}h$ from a previous study, Tthe semi-basement type greenhouse seemed to have energy saving effects. Conclusions: The semi-basement type greenhouse could be operated with the same fuel consumption as general greenhouses, even though its underground portion resulted in a larger volume, indicating positive effects on energy saving and space utilization. It was identified that the heat losses could be reduced by installing a thermal curtain of multi-layered materials for heat insulation inside the greenhouse for the cultivation of horticultural products by installing thermal curtain of multi-layered materials for heat insulation inside the greenhouse, it was identified that the heat losses could be reduced.