Changes in Growths of Tomato and Grafted Watermelon Seedlings and Allometric Relationship among Growth Parameters as Affected by Shading During Summer

여름철 차광처리에 따른 토마토묘와 수박 접목묘의 생육과 생육지표간 상대적 관계

  • Kang, Yun-Im (Protected horticulture Research Satation, National Institute of Horticultural & Herbal Science, RDA) ;
  • Kwon, Joon-Kook (Protected horticulture Research Satation, National Institute of Horticultural & Herbal Science, RDA) ;
  • Park, Kyoung-Sub (Protected horticulture Research Satation, National Institute of Horticultural & Herbal Science, RDA) ;
  • Yu, In-Ho (Protected horticulture Research Satation, National Institute of Horticultural & Herbal Science, RDA) ;
  • Lee, Si-Young (Director General for Olanning & Coordination, RDA) ;
  • Cho, Myeong-Whan (Protected horticulture Research Satation, National Institute of Horticultural & Herbal Science, RDA) ;
  • Kang, Nam-Jun (Department of Horticulture, Gyeongsang National University)
  • 강윤임 (농촌진흥청 국립원예특작과학원 시설원예시험장) ;
  • 권준국 (농촌진흥청 국립원예특작과학원 시설원예시험장) ;
  • 박경섭 (농촌진흥청 국립원예특작과학원 시설원예시험장) ;
  • 유인호 (농촌진흥청 국립원예특작과학원 시설원예시험장) ;
  • 이시영 (농촌진흥청 연구정책국) ;
  • 조명환 (농촌진흥청 국립원예특작과학원 시설원예시험장) ;
  • 강남준 (국립경상대학교 원예학과)
  • Received : 2010.05.13
  • Accepted : 2010.10.13
  • Published : 2010.12.31

Abstract

This study was conducted to examine the changes in growths of tomato and watermelon seedlings and the relationship among growth parameters which are used to evaluate healthy seedling as affected by shading. Plants were grown under 0%, 25%, 50%, and 75% shadings using polyethylene films. Leaf area index (LAI) of tomato and grafted watermelon seedlings increased under 50% and 75% shading. Total dry weight decreased with increase of shading level. The growth rates of stem diameter, LAI, total weight were faster under 50% and 75% shading with increase of integral radiation than under 0% and 25% shading. Stem diameters of tomato and grafted watermelon seedlings showed no significant differences among shading regimes. Stem diameters of tomato seedlings had upward tendency with increase of total dry weight and shoot height, but there were no significant differences among shading regimes. Stem diameters of grafted watermelon seedlings had no relationship with shoot height. These results indicate that stem diameter of tomato seedlings is not appropriate for assessing seedlings quality but stem diameter of grafted watermelon seedlings with shoot height is available.

작물의 묘소질은 정식 후 본포에서의 생육이나 수량, 품질에 영향을 미치기 때문에 작물 재배에서 있어서 육묘는 매우 중요하다. 본 연구는 차광을 이용한 다양한 광 수준이 토마토묘와 수박 접목묘의 생육에 어떠한 영향을 미치는지 살펴보고 차광에 의해 변화된 초장, 건물중, 경경 등의 건묘를 나타내는 중요 생육지표간의 상관관계를 분석하여 그동안 사용된 건묘를 판단하는 지표에 대해 검토하기 위해 수행하였다. 차광은 PE 비닐을 이용하여 하루 중 누적광량을 25, 50, 75%를 감소시켰다. 50% 이상 차광할 경우 누적광량에 비하여 토마토묘와 수박 접목묘의 엽면적이 크게 증가하였고 엽면적 지수가 빠르게 증가하였다. 건물중은 차광수준에 따라 감소하는 것으로 나타났다. 누적광량에 따른 토마토묘와 수박 접목묘의 생육은 무차광에 비하여 차광처리에서 빠르게 증가하였다. 토마토묘와 수박 접목묘의 경경은 차광 처리간의 큰 차이를 보이지 않았다. 토마토묘의 경우 단순히 초장과 건물중과의 상관관계가 높았지만 수박 접목묘의 경경은 초장과 상관관계가 없는 것으로 나타났다. 토마토묘의 경경은 묘소질을 판단하기에는 부적절하지만 수박 접목묘의 경우 초장과 함께 경경은 묘소질 판단하는데 이용 가능할 것으로 판단된다.

Keywords

References

  1. Bayala, J., M. Dianda, J. Wilson, S.J. Ouedraogo, and K. Sanon. 2009. Predicting field performance of five irrigated tree species using seedling quality assessment in Bukina Faso, West Africa. New Forests 38:309-322. https://doi.org/10.1007/s11056-009-9149-4
  2. Chen, J.M. and T.A. Black. 1992. Defining leaf area index for non-flat leaves. Plant, Cell and Environment 15:421-429. https://doi.org/10.1111/j.1365-3040.1992.tb00992.x
  3. Clouse, S.D. 2001. Integration of light and brassinosteroid signals in etiolated seedling growth. Trends in Plant Science 6(10):443-445. https://doi.org/10.1016/S1360-1385(01)02102-1
  4. Colombo, R., M. Meroni, A. Marchesi, L. Busetto, M. Rossini, C. Giardino, and C. Panigada. 2008. Estimation of leaf and canopy water content in poplar plantations by means of hyperspatial indices and inverse modeling. Remote Sensing of Environment 112:1820-1834. https://doi.org/10.1016/j.rse.2007.09.005
  5. Hurd, R.G. and J.H.M. Thornely. 1974. An analysis of the growth of young tomato plants in water culture at different light integrals and $CO_{2}$. Annals of Botany 38:375-388.
  6. Jefferson, P.G. and R. Muri. 2007. Competition, light quality and seedling growth of russian wild rye grass (Psathyrostachys juncea). Acta Agronomica Hugarica 55(1):49-60. https://doi.org/10.1556/AAgr.55.2007.1.6
  7. Juan, L.I., J. Zhou, and Z. Duan. 2007. Effects of elevated $CO_{2}$ concentration on growth and water usage of tomato seedlings under different ammonium/nitrate ratios. Journal of Environmental Sciences 19:1100-1107. https://doi.org/10.1016/S1001-0742(07)60179-X
  8. Kamiya, Y. and L.G.M. Jose. 1999. Regulation of gibberellin biosynthesis by light. Current Opinion in Plant Biology 2:398-403. https://doi.org/10.1016/S1369-5266(99)00012-6
  9. Kobe, R. 1999. Light gradient partitioning among tropical tree species through differential seedling mortality and growth. Ecology 80(1):187-201. https://doi.org/10.1890/0012-9658(1999)080[0187:LGPATT]2.0.CO;2
  10. Kurepin, L.V., R.G.N. Emery, R.P. Pharis, and E.M. Reid. 2007. Uncoupling light quality from light irradiance effects in Helianthus annuus shoots: putative roles for plant hormones in leaf and internode growth. Journal of Experimental Botany 58(8):2145-2157. https://doi.org/10.1093/jxb/erm068
  11. Kwon, J.K., J.C. Park, J.H. Lee, D.K. Park, and Y.H. Choi. 2003. Effect of UV-B irradiation on overgrowth retardation of plug-grown fruit vegetable transplant. J. Kor. Soc. Hort. Sci. 44(4):458-463.
  12. Lee, J.H. 2002. Analysis and simulation of growth and yield of cut chrysanthemum. PhD Diss., Wageningen Univ. pp. 40-41.
  13. Lusk, C.H. 2002. Leaf area accumulation helps juvenile evergreen trees tolerate shade in a temperate rainforest. Oeclolgia 132:188-196. https://doi.org/10.1007/s00442-002-0974-9
  14. Madsen, P. 1994. Growth and survival of Fafus sylvatica seedlings in relation to light intensity and soil water content. Scandinavian Journal of Forest Research 9:316-322. https://doi.org/10.1080/02827589409382846
  15. Mattsson, A. 1996. Predicting field performance using seedling quality assessment. New Forests 13:223-248.
  16. Park, H.J., D.H. Chung, S.G. Kim, and B.S. Kwon. 1995. Influences of Sowing Time and Nursery Period on Growth and Yield of Perilla frutescens BRITTON var. acuta KUDO. Korean J. Medicinal Crop Sci. 3(1):1-4.
  17. Piszczek, P. and B. Glowacka. 2008. Effect of the colour of light on cucumber (Cucumis sativus L.) seedlings. VEGETABLE CROP RESEARCH BULLTIN 68:71-80. https://doi.org/10.2478/v10032-008-0006-3
  18. Qu, Y.H., X.M. Wei, Y.F. Hou, B. Chen, G.Q. Chen, and C. Lin. 2009. Analysis for an environmental friendly seedling breeding system. Communications in Nonlinear Science and Numerical Simulation 14(4):1766-1772. https://doi.org/10.1016/j.cnsns.2008.03.020
  19. Sabongari, S. and B.L. Aliero. 2004. Effect of soaking duration on germination and seedling growth of tomato (Lycopersicum esculentum Mill). African Journal of Biotechnology 3(1):47-51.
  20. Seo, J.U., J.M. Hwang, and S.M. Oh. 2006. Effects of night temperature treatment of raising seedlings before transplanting on growth and development of pepper. Journal of Bio-Environment Control 15(2):149-155.
  21. von Arnim, A. and X.W. Deng. 1996. Light control of seedling development. Annual review of plant physiology and plant molecular biology 47:215-243 https://doi.org/10.1146/annurev.arplant.47.1.215
  22. Zheng, G. and L.M. Moskal. 2009. Retrieving Leaf Area Index (LAI) Using Remote Sensing: Theories, Methods and Sensors. Sensors 9:2719-2745. https://doi.org/10.3390/s90402719