• Title/Summary/Keyword: Polyethersulfone

Search Result 141, Processing Time 0.03 seconds

The optical, electrical and structural properties in indium zinc oxide films deposited by LF magnetron sputtering

  • Kim, Eun-Lyoung;Jung, Sang-Kooun;Kim, Myung-Chan;Lee, Yun-Su;Song, Kap-Duk;Park, Lee-Soon;Sohn, Sang-Ho;Park, Duck-Kyu
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1402-1405
    • /
    • 2006
  • Using a indium zinc oxide (IZO) alloy target with a ratio of 90:10 in wt%, highly transparent conducting oxide (TCO) thin films are prepared on polyethersulfone (PES) substrates by lowfrequency (LF) magnetron sputtering system. These films have amorphous structures with excellent electrical stability, surface uniformity and high optical transmittance. Experiments were carried out as a function of applied voltage. At optimal deposition conditions, thin films of IZO with a sheet resistance of 29 ohm/sq. and an optical transmission of over 82 % in the visible spectrum range were achieved. The IZO thin films fabricated by this method do not require substrate heating during the film preparation or any additional post-deposition annealing treatment.

  • PDF

Organic Thin-Film Transistors Fabricated on Flexible Substrate by Using Nanotransfer Molding

  • Hwang, Jae-Kwon;Dang, Jeong-Mi;Sung, Myung-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.287-287
    • /
    • 2010
  • We report a new direct patterning method, called liquid bridge-mediated nanotransfer molding (LB-nTM), for the formation of two- or three-dimensional structures with feature sizes between tens of nanometers and tens of micron over large areas. LB-nTM is based on the direct transfer of various materials from a mold to a substrate via a liquid bridge between them. This procedure can be adopted for automated direct printing machines that generate patterns of functional materials with a wide range of feature sizes on diverse substrates. Arrays of TIPS-PEN TFTs were fabricated on 4" polyethersulfone (PES) substrates by LB-nTM using PDMS molds. An inverted staggered structure was employed in the TFT device fabrication. A 150 nm-thick indium-tin oxide (ITO) gate electrode and a 200 nm-thick SiO2dielectric layer were formed on a PES substrate by sputter deposition. An array of TIPS-PEN patterns (thickness: 60 nm) as active channel layers was fabricated on the substrate by LB-nTM. The nominal channel length of the TIPS-PEN TFT was 10 mm, while the channel width was 135 mm. Finally, the source and drain electrodes of 200 nm-thick Ag were defined on the substrate by LB-nTM. The TIPS-PEN TFTs can endure strenuous bending and are also transparent in the visible range, and therefore potentially useful for flexible and invisible electronics.

  • PDF

Adsorption Characteristic of L-tryptophan of Affinity Membrane (친화막의 L-tryptophan 흡착특성)

  • Byun, Hong-Sik;Hong, Byung-Pyo
    • Membrane Journal
    • /
    • v.18 no.3
    • /
    • pp.214-218
    • /
    • 2008
  • Protain affinity membranes based on PES-BSA was preapared by the electrospinning method. The process problem caused by the electrospining was solved by using HFB having high solubility and boiling point. It was expecting that the mass production of protein affinity membrane would be possible with broad range of optimized temperature and humidity. BSA in the PES nanofiber was confirmed by the color change from colorless to violet during the biuret test. The buffer solution with DMSO showed that the amount of elution was 5 times higher than the one when the buffer solution without DMSO was used. This is due to the restriction effect of DMSO on the dissociation of L-tryptophan from BSA during the washing step.

Gas Transport Behavior of Polydopamine-Coated Composite Membranes (폴리도파민/미세다공성 복합막의 기체투과특성)

  • Kim, Hyo Won;Park, Ho Bum
    • Membrane Journal
    • /
    • v.23 no.2
    • /
    • pp.136-143
    • /
    • 2013
  • Recently, a novel coating method using an aqueous doapmine solution was proposed, the deposited coating was found to have extraordinarily strong-adhesion to numerous materials such as metal and polymers. However, it has suffered from many controversy in scientific fields due to its final structure and deposited mechanisms. Here, we have proposed a new structure for final dopamine product coupling with solid state spectroscopic, thermal behavior, and gas transport behaviors of dopamine coated microporous polyethersulfone membranes. In its final analysis, the results represented that it is a supramolecular aggregated of monomers consisting of 5,6-dihydroxyindoline and its derivative in contrast to previously proposed polymeric structure.

Pervaporation of TFEA/MA/Water Mixtures through PVA Composite Membranes

  • Ahn, Sang-Man;Kim, Jeong-Hoon;Lee, Yong-Taek;Lee, Soo-Bok
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2005.11a
    • /
    • pp.133-147
    • /
    • 2005
  • In order to investigate applicability for 2,2,2-trifluoroethyl methacrylate (TFEMA) produced by esterification of 2,2,2-trifluoroethanol(TFEA) and methacrylic acid(MA) using pervaporation membrane, poly(vinyl alcohol) (PVA) composite membranes were prepared with glutaraldehyde(GA) onto porous polyethersulfone(PES) support. The degree of crosslinking and thickness of PVA coating layer were analyzed by swelling test and SEM(scanning electron microscopy), respectively. Pervaporation test was done with two feed mixures; TFEA/water, MA/water. The pervaporation data were obtained as a function of content of crosslinking agent, feed composition, and operating temperature, respectively. In case of TFEA-water(90/10 wt%) feed mixture at $80^{\circ}C$, the optimized membrane showed the high permeation flux of 1.5 $kg/m^2hr$ and separation factor of 320. In case of MA-water(90/10 wt%) feed mixture, the membranealso showed high permeation flux of 2.3 $kg/m^2hr$ and separation factor of 740 in same conditions.

  • PDF

The roles of polyethersulfone and polyethylene glycol additive on nanofiltration of dyes and membrane morphologies

  • Hassan, Abdul Rahman;Rozali, Sabariah;Safari, Nurul Hannan Mohd;Besar, Badrul Haswan
    • Environmental Engineering Research
    • /
    • v.23 no.3
    • /
    • pp.316-322
    • /
    • 2018
  • In this study, the effects of polymer concentration and additive in the formation of asymmetric nanofiltration (NF) membrane were evaluated. The membrane fabrication was carried out via dry/wet phase inversion technique. A new formulation of dope solution with polymer concentration ranging between 17 wt% to 21 wt% and the present of additive was developed. The results show that the permeate flux gradually decreases as polymer concentration increased, until $2.5969L/m^2h$ and increased the rejection up to 98.7%. Addition of additive, polyethylene glycol 600 increased dyes rejection up to 99.8% and decreased the permeate flux to $3.6501L/m^2h$. This indicates that the addition of polyethylene glycol additive led towards better membrane performance. The morphological characteristics of NF membrane were analysed using a Scanning Electron Microscopy.

A Study on the Mis-align during Fabricated Poly-Si TFT on Polymer substrate (고분자 기판위에 Poly-Si TFT 제작시 Mis-align방지를 위한 연구)

  • Kang, Su-Hee;Hwang, Jung-Yeon;Seo, Dae-Shik;Kim, Young-Hun;Moon, Dae-Kyu;Han, Jung-In
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.173-176
    • /
    • 2005
  • Teijin사의 HT100-B60의 폴리카보네이트(polycarbonate) $100{\mu}m$, I-Component사의 PES(polyethersulfone) $200{\mu}m$, Ferrania사의 PAR(polyacrylate) $100{\mu}m$$200{\mu}m$를 사용하였다 열팽창계수의 차이로 인해 공정상 기판의 가열과 냉각시 열응력이 발생하여 기판의 크랙발생의 원인이 된다. 이를 최소화하기 위해 모든 공정이 시작하기 전에 pre-annealing을 통해 plastic 기판의 시간별 공정을 실시하였다. plastic film의 annealing time은 0h, 12h, 24, 40h, 50h, 60h, 70h, 80h으로 사간을 달리하여 오븐 안의 진공상태를 조성하여 실험하였다. Thermal evaporator로 Al을 약 170nm 증착하였으며 (주)동진 세미캠의 DTFR-1011s DR LCD용 감광액을 Spin Coating Spread(500rpm/6sec), Spin(3000rpm/20sec)으로 coating하였다.

  • PDF

Desalting enhancement for blend polyethersulfone/polyacrylonitrile membranes using nano-zeolite A

  • Mansor, Eman S.;Jamil, Tarek S.;Abdallah, Heba;Youssef, H.F.;Shaban, Ahmed M.;Souaya, Eglal R.
    • Membrane and Water Treatment
    • /
    • v.10 no.6
    • /
    • pp.451-460
    • /
    • 2019
  • Thin film composite membranes incorporated with nano-sized hydrophilic zeolite -A were successfully prepared via interfacial polymerization (IP) on porous blend PES/PAN support for water desalination. The thin film nanocomposite membranes were characterized by SEM, contact angle and performance test with 7000 ppm NaCl solution at 7bar. The results showed that the optimum zeolite loading amount was determined to be 0.1wt% with permeate flux 29LMH.NaCl rejection was improved from 69% to 92% compared to the pristine polyamide membrane where the modified PA surface was more selective than that of the pristine PA. In addition, there was no significant change in the permeate flux of the thin film nanocomposite membrane compared with that of the pristine PA in spite of the formation of the dense polyamide layer. The stability of the polyamide layer was investigated for 15 days and the optimized membrane presented the highest durability and stability.

Effect of coagulation conditions on ultrafiltration for wastewater effluent

  • Maeng, Sung Kyu;Timmes, Thomas C.;Kim, Hyun-Chul
    • Membrane and Water Treatment
    • /
    • v.8 no.2
    • /
    • pp.185-199
    • /
    • 2017
  • Low-pressure membrane filtration is increasingly used for tertiary treatment of wastewater effluent organic matter (EfOM), mainly comprising organic base/neutral compounds. In-line coagulation with underdosing, charge neutralization, and sweep floc conditions prior to ultrafiltration (UF) was studied to determine removals of the EfOM components and consequent reduction of fouling using polyethersulfone membranes. Coagulation and UF substantially reduced fouling for all coagulation conditions while removing from 7 to 38% of EfOM organic acids. From 7 to 16% of EfOM organic base/neutrals were removed at neutral pH but there was no significant removal for slightly acid coagulation conditions even though fouling was substantially reduced. Sweep floc produced the lowest resistance to filtration but may be inappropriate for in-line use due to the large added volume of solids. Charge-neutralization resulted in poor recovery of the initial flux with hydraulic cleaning. Under-dosing paralleled sweep floc in reducing hydraulic resistance to filtration (for sub-critical flux) and the initial flux was also easily recovered with hydraulic cleaning. Hydrophobic and hydrophilic base/neutrals were identified on the fouled membranes but as previously reported the extent of fouling was not correlated with accumulation of organic base/neutrals.

Effects of Surface Modification of the Membrane in the Ultrafiltration of Waste Water

  • Cho Dong Lyun;Kim Sung-Hyun;Huh Yang Il;Kim Doman;Cho Sung Yong;Kim Byung-Hoon
    • Macromolecular Research
    • /
    • v.12 no.6
    • /
    • pp.553-558
    • /
    • 2004
  • An ultrafiltration membrane (polyethersulfone, PM 10) was surface-modified by treating it with low-tem­perature plasmas of oxygen, acrylic acid (AA), acetylene, diaminocyolohexane (DACH), and hexamethyldisiloxane (HMDSO). The effects that these modifications have on the filtration efficiency of a membrane in waste water treat­ment were investigated. The oxygen, AA, and DACH plasma-treated membranes became more hydrophilic. The water contact angles ranged from < $10^{\circ}\;to\;55^{\circ}$ depending on the type of plasma and the treatment conditions. The oxygen plasma-treated membranes displayed a higher initial flux $(312-429\%),$ but lower rejection $(6-91\%),$ than did an untreated membrane. The AA plasma-treated membranes displayed lower or higher initial flux $(42-156\%),$ depending upon the treatment conditions, but higher rejection $(224-295\%)$ in all cases. The DACH plasma-treated membranes displayed lower initial flux. All of them, especially the AA plasma-treated membrane, displayed improved fouling resistance with either a slower or no flux decline. Acetylene and HMDSO plasma-treated membranes became more hydrophobic and displayed both lower initial flux and lower fouling resistance.