• Title/Summary/Keyword: Polyelectrolyte complex

Search Result 39, Processing Time 0.021 seconds

Dual pH sensitive polyelectrolyte complex membranes composed of chitosan and poly(acrylic acid)

  • 박호범;남상용;이영무
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1996.10a
    • /
    • pp.80-81
    • /
    • 1996
  • 일반적으로 고분자전해질은 고유의 독특한 특성으로 고분자 분리막, 이온교환수지, 의료용고분자등에 널리 응용이 되고 있다. 이러한 고분자전해질은 음이온성과 양이온성이 있으며, 그 이온적성질으로 인하여 반대의 전하를 띄는 고분자전해질들끼리 결합하는 성질을 가지고 있다. 이러한 고분자전해질 착체는 고분자전해질과는 또 다른 고유한 특성을 나타내고 있으며, 특히 고분자분리막과 의료용재료 분야에 응용가능성이 큰 물질이다. 특히 양이온성과 음이온성을 동시에 보유하고 있는 구조적 특성에 의하여 산성과 염기성 모두에서 감응성을 나타낼 수 있다. 일반적으로 고분자 겔의 경우 산성 또는 염기성 영역에서 해리되는 특성에 의하여 pH 감응성을 나타내지만 한쪽 영역에서만 특성을 나타내고 있다. 본 실험에서는 키토산과 폴리아크릴산으로 제조된 고분자전해질착체를 이용하여 pH변화에 따른 함수거동을 관찰함으로써 양쪽의 pH 감응성을 고찰해보고자 하였다.

  • PDF

Complexation of Cadmium(II) with Soil Fulvic Acid

  • Me Hae Lee;Se Young Choi;Hichung Moon
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.4
    • /
    • pp.453-457
    • /
    • 1993
  • Cadmium(II) complexation by a well characterized soil fulvic acid (FA) from the Okchun Metamorphic Belt were studied at pH of 6.0 in 0.1 M $NaClO_4$ using the ultrafiltration technique. The conditional stability constants thus obtained were log K= 3.90${\pm}$0.15 and 3.99${\pm}$0.12 $L{\cdot}mol^{-1}$ at fulvic acid concentrations of 101 and 226 mg${\cdot}L^{-1}$ respectively. When free cadmium ion concentration was measured directly using an ion selective electrode, log K of 4.12${\pm}$0.03 $L{\cdot}mol^{-1}$ was obtained. These results show that fulvic acid forms predominately 1 : 1 complex with $Cd^{2+}$ ions. The maximum binding ability of this polyelectrolyte material was 0.886 mmol Cd/g FA. The average gram formula weight of fulvic acid was estimated to be 1130 daltons.

Modulation of Hyaluronic Acid Properties by Electron Beam Irradiation (전자선 조사를 이용한 히알루론산의 특성 조절)

  • Shin, Young Min;Kim, Woo-Jin;Kim, Yong-Soo;Jo, Sun-Young;Park, Jong-Seok;Gwon, Hui-Jeong;Lim, Youn-Mook;Nho, Young-Chang
    • Journal of Radiation Industry
    • /
    • v.5 no.2
    • /
    • pp.159-164
    • /
    • 2011
  • A variety of natural polymers have been used as tissue engineering scaffolds, drug delivery system, and cosmetic materials due to their higher biocompatibility and water uptake. As a major component of extracellular matrix, hyaluronic acid consisting of D-glucuronic acid and N-acetylglucosamine has been popularly used as a hydrogel material. Even though it has good properties to be used in the tissue engineering and cosmetic industry, its higher viscosity has limited a potential use in a variety of applications; only low content should be applied in preparing above products. In the present study, we investigated the effect of electron beam irradiation on the properties of hyaluronic acid. Hyaluronic acid paste containing low contents of water changed to solution after electron beam irradiation ranging from 1 to 10 kGy, which didn't exhibit any alteration of surface properties and morphological change after freeze-drying. However, its viscosity was significantly decreased as absorbed dose increased, which was approximately one by hundred in comparison with the viscosity of original hyaluronic acid solution with same concentration. In addition, it can still interact with positive charged chitosan generating polyelectrolyte complex. Therefore, only viscosity was decreased after electron beam irradiation, whereas other properties of hyaluronic acid maintained. Consequently, these hyaluronic acids with lower viscosities can be used in a variety of applications in tissue engineering, drug delivery, and cosmetic industry.

Complexation of Polyelectroyte-Metal(II) Ion. III. The Complex Formation of Iron(II), Cobalt(II), Nickel(II) and Copper(II) with Branched Poly(ethylene imine) (BPEI) in Aqueous Solution (Polyelectrolyte-Metal(II) 이온의 착물화 (제 3 보). Iron(II), Cobalt(II) Nickel(II) 및 Copper(II)와 Branched Poly(ethylene imine) (BPEI)간의 착물생성)

  • Dong Soo Kim;Tae Sub Cho
    • Journal of the Korean Chemical Society
    • /
    • v.30 no.5
    • /
    • pp.456-464
    • /
    • 1986
  • The complex formation of branched poly(ethylene imine) (BPEI) with bivalent transition metal ions, such as Fe(II), Co(II), Ni(II) and Cu(II), have been investigated in terms of visible absorption and pH titration methods in an aqueous solution in 0.1M KCl at 30${\circ}$. The stability constants for M(II)-BPEI complexes was calculated with the modified Bjerrum method. The formation curves of M(II)-BPEI complexes showed that Fe(II), Co(II), Ni(II) and Cu(II) ions formed coordination compounds with four, two, two, and two ethylene imine group, respectively. In the case of Cu(II)-BPEI complex at pH 3.4 ∼ 3.8, ${\lambda}_{max}$ was shifted to the red region with a decrease in the acidity. The overall stability constants (log $K_2$) increased as the following order, Co(II) < Cu(II) < Ni(II) < Fe(II).

  • PDF

Neuronal Differentiation of PC12 Cells Cultured on Growth Factor-Loaded Nanoparticles Coated on PLGA Microspheres

  • Park, Keun-Hong;Kim, Hye-Min;Na, Kun
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.11
    • /
    • pp.1490-1495
    • /
    • 2009
  • The development of nanotechnology has penetrated the fields of biology and medicine, resulting in remarkable applications for tissue regeneration. In order to apply this technology to tissue engineering, we have developed nano-scaled 3D scaffolds consisting of growth factor-loaded heparin/poly(l-lysine) nanoparticles (NPs) attached to the surface of polymeric micro spheres via polyionic complex methods. Growth factor-loaded NPs were simply produced as polyelectrolyte complexes with diameters of 100-200 nm. They were then coated onto positively charged poly(lactic-co-glycolic acid) (PLGA) pretreated with polyethyleneimine to enable cell adhesion, proliferation, and stimulation of neurite outgrowth. Propidium iodide staining and $\beta$-tubulin analysis revealed that neuronal PC12 cells proliferated extensively, expressed significant amounts of b-tubulin, and showed well-structured neurite outgrowth on polymeric microspheres by stimulation with growth factors. These results suggest that cellular adhesion and biological functionality on prepared PLGA microspheres enabled terminal differentiation of neuronal cells.

Low Molecular Weight PEI Conjugated Pluronic Copolymer: Useful Additive for Enhancing Gene Transfection Efficiency

  • Cho Kyung-Chul;Choi Seung-Ho;Park Tae-Gwan
    • Macromolecular Research
    • /
    • v.14 no.3
    • /
    • pp.348-353
    • /
    • 2006
  • For enhancing the gene delivery efficiency of polyplexes, a new formulation was developed using PEI conjugated Pluronic F127 copolymer as an effective additive. Low molecular weight, branched polyethylenimine Mw 600 (LMW BPEI 600) was conjugated to the terminal end of Pluronic F127. The PEI-modified Pluronic copolymers formed a micellar structure in aqueous solution, similar to that of unmodified Pluronic copolymer. PEI modification of Pluronic copolymer increased the size of micelles while concomitantly raising the critical micelle concentration (CMC). The PEI-modified Pluronic copolymer was used as a micellar additive to enhance the gene transfection efficiency of pre-formulated polyelectrolyte complex nanoparticles composed of luciferase plasmid DNA and branched PEI Mw 25k (BPEI 25k) or polylysine Mw 39k (PLL 39k). The luciferase gene expression levels were significantly enhanced by the addition of the BPEI-modified Pluronic copolymer for the two formulations of BPEl and PLL polyplexes. The results indicated that the BPEI-modified Pluronic copolymer micelles ionically interacted on the surface of DNA/BPEI (PLL) polyplexes which might facilitate cellular uptake process.

A Study of Drag Reduction by Polymer-Surfactant Mixture System (고분자-계면활성제 혼합물에 의한 마찰저항 감소연구)

  • Kim, Jeong-Tae;Kim, Cheol-Am;Choe, Hyeong-Jin;Kim, Jong-Bo;Yun, Hyeong-Gi;Park, Seong-Ryong
    • Korean Journal of Materials Research
    • /
    • v.8 no.2
    • /
    • pp.135-140
    • /
    • 1998
  • Drag reduction produced by dilute solution of water soluble ionic polymer-surfactant complex under turbulent flow in a rotating disk apparatus(RDA) was investigated in this study. Three different molecular weights of polyacrylic acid(PAA) were adopted as drag reducing additives, and distilled water was used as a solvent. Experiments were undertaken to observe the dependence of drag reduction on various factors such as polymer molecular weight, molecular expansions and flexibility, rotating speed of the disk and polymer concentration. Specific considerations were put on conformational difference between surfactant and polymer, and effect of pH on ionic polymer possessing various molecular conformation through pH. The complex of ionic polymer and surfactant(Sodium Dodecyl Sulfate) behaves like a large polyelectrolyte. Surfactant changes the polymer conformation and then increases the dimension of the polymer. The radius of gyration, hydrodynamic volume and relative viscosity of the polymer-surfactant system are observed to be greater than those of polymer itself. Such surfactant-polymer complex has enhanced drag reduction properties.

  • PDF

Fabrication of Cell Chip through Eco-friendly Process (전해질 고분자 코팅 표면을 이용한 세포칩 제작)

  • Jeong, Heon-Ho;Song, Hwan-Moon;Lee, Chang-Soo
    • Clean Technology
    • /
    • v.17 no.1
    • /
    • pp.25-30
    • /
    • 2011
  • This study presents a fabrication method of cell-chip using aqueous solution based surface modification. The applications of cell-chip have potential for fundamental study of genetics, cell biology as well as cancer diagnostics and treatment. Conventional methods for fabrication of cell-chip have been limited in economic loss and environmental pollution because of the use of harsh organic solvent, complex process of silicon technology, and expensive equipment. In order to fabricate cell chip, we have proposed simple and eco-friendly process combined polyelectrolyte multilayer coating with microcontact printing. For the proof of concept, the cell chip can be applied to analyze the different expression of cell surface glycans and derivatives between cancer and normal cells. Our proposed method is useful technique for the application of novel cancer diagnostics and basic medical engineering.

Experimental design approach for ultra-fast nickel removal by novel bio-nanocomposite material

  • Ince, Olcay K.;Aydogdu, Burcu;Alp, Hevidar;Ince, Muharrem
    • Advances in nano research
    • /
    • v.10 no.1
    • /
    • pp.77-90
    • /
    • 2021
  • In the present study, novel chitosan coated magnetic magnetite (Fe3O4) nanoparticles were successfully biosynthesized from mushroom, Agaricus campestris, extract. The obtained bio-nanocomposite material was used to investigate ultra-fast and highly efficient for removal of Ni2+ ions in a fixed-bed column. Chitosan was treated as polyelectrolyte complex with Fe3O4 nanoparticles and a Fungal Bio-Nanocomposite Material (FBNM) was derived. The FBNM was characterized by using X-Ray Diffractometer (XRD), Scanning Electron Microscopy-Energy Dispersive X-Ray Spectroscopy (SEM-EDS), Fourier Transform Infrared spectra (FTIR) and Thermogravimetric Analysis (TGA) techniques and under varied experimental conditions. The influence of some important operating conditions including pH, flow rate and initial Ni2+ concentration on the uptake of Ni2+ solution was also optimized using a synthetic water sample. A Central Composite Design (CCD) combined with Response Surface Modeling (RSM) was carried out to maximize Ni2+ removal using FBNM for adsorption process. A regression model was derived using CCD to predict the responses and analysis of variance (ANOVA) and lack of fit test was used to check model adequacy. It was observed that the quadratic model, which was controlled and proposed, was originated from experimental design data. The FBNM maximum adsorption capacity was determined as 59.8 mg g-1. Finally, developed method was applied to soft drinks to determine Ni2+ levels. Reusability of FBNM was tested, and the adsorption and desorption capacities were not affected after eight cycles. The paper suggests that the FBNM is a promising recyclable nanoadsorbent for the removal of Ni2+ from various soft drinks.