DOI QR코드

DOI QR Code

Fabrication of Cell Chip through Eco-friendly Process

전해질 고분자 코팅 표면을 이용한 세포칩 제작

  • Jeong, Heon-Ho (Department of Chemical Engineering, Chungnam National University) ;
  • Song, Hwan-Moon (Department of Chemical Engineering, Chungnam National University) ;
  • Lee, Chang-Soo (Department of Chemical Engineering, Chungnam National University)
  • Received : 2010.11.17
  • Accepted : 2011.01.03
  • Published : 2011.03.31

Abstract

This study presents a fabrication method of cell-chip using aqueous solution based surface modification. The applications of cell-chip have potential for fundamental study of genetics, cell biology as well as cancer diagnostics and treatment. Conventional methods for fabrication of cell-chip have been limited in economic loss and environmental pollution because of the use of harsh organic solvent, complex process of silicon technology, and expensive equipment. In order to fabricate cell chip, we have proposed simple and eco-friendly process combined polyelectrolyte multilayer coating with microcontact printing. For the proof of concept, the cell chip can be applied to analyze the different expression of cell surface glycans and derivatives between cancer and normal cells. Our proposed method is useful technique for the application of novel cancer diagnostics and basic medical engineering.

본 연구 논문은 수용액 기반의 청정 표면 개질 기술을 이용하여 세포칩을 제작하는 방법에 관한 것이다. 세포칩의 활용범위는 유전학, 의생물학, 세포생물학 등과 같은 기초학문과 더불어 암 진단 및 치료에 대한 유용한 도구로 응용 가능성을 가지게 된다. 기존의 세포 칩 제작을 위해서는 다량의 유기용매의 사용, 반도체 공정의 복잡성, 고가의 장비 등을 사용함으로 인해 경제적 손실과 환경적 악영향을 주었다. 본 연구에서는 수용액 기반의 청정 표면 개질 기술과 마이크로 컨택트 프린팅 방법을 이용한 세포 패터닝 기술을 융합하여 매우 손쉬운 세포 칩 구현을 하는 기반기술을 제시하였다. 이 세포칩을 이용하여 암세포와 정상세포간의 세포표면에서 발현되는 다양한 탄수화물 및 그의 유도체의 발현양의 차이를 분석할 수 있었다. 이를 바탕으로 새로운 암진단 기술 및 기초 의공학 기술에 활용하고자 한다.

Keywords

References

  1. Yamazoe, H., Uemura, T., and Tanabe, T, "Facile Cell Patterning on an Albumin-Coated Surface," Langmuir, 24(16), 8402-8404 (2008). https://doi.org/10.1021/la801221r
  2. Rosenthal, A., Macdonald, A., and Voldman, J., "Cell Patterning Chip for Controlling the Stem Cell Microenvironment," Biomaterials, 28(21), 3208-3216 (2007). https://doi.org/10.1016/j.biomaterials.2007.03.023
  3. Neff, J. A., Tresco, P. A., and Caldwell, K. D., "Surface Modification for controlled studies of Cell-Ligand Interactions," Biomaterials, 20(23), 2377-2393 (1999). https://doi.org/10.1016/S0142-9612(99)00166-0
  4. Nishizawa, M., Takahasi, A., Kaji, H., and Matsue, T., "Micropatterned HeLa Cell Culture on PEG Monolayer-Coated Glass Substrates," Chem. Lett., 31(9), 905-905 (2002).
  5. Tryoen-Toth, P., Vautier, D., Haikel, Y., Voegel, J. C., Schaaf, P., Chluba, J., and Ogier, J., "Viability, Adhesion, and Phenotype of Osteoblast-like Cells on Polyelectrolyte Multilayer Films," J. Biomed. Mater. Res., 60(4), 657-667 (2002). https://doi.org/10.1002/jbm.10110
  6. Khopade, A. J., and Caruso, F., "Stepwise Self-assembled Poly (amidoamine) Dendrimer and Poly (styrenesulfonate) Microcapsules as Sustained Delivery," Biomacromolecules, 3(6), 1154-1162 (2002). https://doi.org/10.1021/bm025562k
  7. Varki, A., "Biological Roles of Oligosaccharides: All of the Theories are Correct," Glycobiology, 3(2), 97-130 (1993). https://doi.org/10.1093/glycob/3.2.97
  8. Raymond A. Dwek, "Towards Understanding the Function of Sugars," Chem. Rev., 96(2), 683-720 (1996). https://doi.org/10.1021/cr940283b
  9. Saxon, E., and Bertozzi, C. R., "Chemical and Biological Strategies for Engineering Cell Surface Glycosylation," Annu. Rev. Cell Dev. Biol., 17, 1-23 (2001). https://doi.org/10.1146/annurev.cellbio.17.1.1
  10. Taniguchi, N., Gu, J., and Takahashi, M., "Functional Glycomics and Evidence for Gain- and Loss-of-Functions of Target Proteins for Glycosyltransferases Involved in N-glycan Biosynthesis: Their Pivotal Roles in Growth and Development, Cancer Metastasis and Antibody Therapy Against Cancer," Proc. Jpn. Acad. Ser. B, 80, 82-91 (2004). https://doi.org/10.2183/pjab.80.82
  11. Taniguchi, N., Miyoshi, E., Gu, J., Honke, K., and Matsumoto, A., "Decoding Sugar functions by Identifying Target Glycoproteins," Curr. Opin. Struct. Biol., 16(5), 561-566 (2006). https://doi.org/10.1016/j.sbi.2006.08.011
  12. Danielle H. Dube, and Carolyn R. Bertozzi, "Glycans in Cancer and Inflammation - Potential for Therapeutics and Diagnostics," Nat. Rev. Drug. Descov., 4(6), 477-488 (2005). https://doi.org/10.1038/nrd1751
  13. Mark M. Fuster, and Jeffrey D. Esko, "The Sweet and Sour of Cancer: Glycans as Novel Therapeutic Targets," Nat. Rev. Cancer., 5(7), 526-542 (2005). https://doi.org/10.1038/nrc1649
  14. Bharathan, S., Moriarty, J., Moody, C. E., and Sherblom, A. P., "Effect of Tunicamycin on Sialomucin and Natural killer Susceptibility of Rat Mammary Tumor Ascites Cells," Cancer. Res., 50(17), 5250-5256 (1990).
  15. Zhelev, Z., Ohba, H., Bakalova, R., Jose, R., Fukuoka, S., Nagase, T., Ishikawa, M., and Baba, Y., "Fabrication of Quantum dot-Lectin Conjugates as Novel Fluorescent Probes for Microscopic and Flow Cytometric identification of Leukemia Cells from Normal Lymphocytes," Chem. Commun., 41(15), 1980- 1982 (2005).
  16. Shim, H.-W., Lee, J.-H., Hwang, T.-S., Rhee, Y. W., Bae, Y. M., Choi, J. S., Han, J.Y., and Lee, C.-S., "Patterning of Proteins and Cells on Functionalized Surfaces Prepared by Polyelectrolyte Multilayers and Micromolding in Capillaries," Biosens. Bioelectron., 22(12), 3188-3195 (2007). https://doi.org/10.1016/j.bios.2007.02.016
  17. Jeong, H.-H., Song, H.-M., Hwang, Y.-J., Hwang, T.-S., and Lee, C.-S., "Facile Cell Patterning Based on Selectively Patterned Polydimethylsiloxane (PDMS) and Polyelectrolyte Surface," KSBB J., 24(6), 515-520 (2009).
  18. Paul Roach, David Farrar, and Carole C. Perry, "Interpretation of Protein Adsorption: Surface-Induced Conformational Changes," J. Am. Chem. Soc., 127(22), 8168-8173 (2005). https://doi.org/10.1021/ja042898o