• Title/Summary/Keyword: Polycrystalline structure

Search Result 388, Processing Time 0.034 seconds

[ $Gd_2O_3:Eu$ ] System: Structural Study of the Influence of Luminescence Center Concentration

  • Rabanal, M.E.;Gomez, L.;Khalifa, A.;Mancic, L.;Milosevic, O.;Torralba, J.M.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.668-669
    • /
    • 2006
  • The influence of $Eu^{3+}$ doping on the structural and morphological properties of the $Gd_2O_3:Eu^{3+}$ phosphor system, obtained ultrasonically via Spray Pyrolysis from common gadolinium and europium nitrate solutions, was studied. The particle morphology, crystalline and chemical structure were studied by XRD, SEM and EDS. TEM was applied in order to identify the structure and growth of "primary nanoparticles" and determine the presence of domains locally affected by "Moires Frames" and "Crystallite Size". The SADP allows determining the presence of a polycrystalline material with two phases in the "as-prepared" samples, and only an Ia3 phase along the thermal treatment.

  • PDF

Characteristics of nanocrystalline ZnO films grown on polyctystalline AlN for wireless chemical sensors (무선 화학센서용으로 다결정 AlN 위에 성장된 나노결정질 ZnO 막의 특성)

  • Song, Le Thi;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.252-252
    • /
    • 2009
  • In this work, the nanocrystalline ZnO/polycrystalline (poly) aluminum nitride (AlN)/Si structure was fabricated for humidity sensor applications based on surface acoustic wave (SAW). In this structure, the ZnO film was used as sensing material layer. These ZnO and AlN(0002) were deposited by so-gel process and a pulse reactive magnetron sputtering, respectively. These experimental results showed that the obtained SAW velocity on AlN film was about 5128 m/s at $h/\lambda$=0.0125 (h and $\lambda$ is thickness and wavelength, respectively). For ZnO sensing layers coated on AlN, films have hexagonal wurtzite structure and nanometer particle size. The crystalline size of ZnO films annealed at 400, 500, and 600 $^{\circ}C$ is 10.2, 29.1, and 38 nm, respectively. Surface of the film exhibits spongy which can adsorb steam in the air. The best quality of the ZnO film was obtained with annealing temperature at 500 $^{\circ}Cis$. The change in frequency response (127.9~127.85 MHz) of the SAW humidity sensor based on ZnO/AlN structure was measured along the change in humidity (41~69%). The structural properties of thin films wereinvestigated by XRD and SEM.

  • PDF

Plasmonic Enhanced Light Absorption by Silver Nanoparticles Formed on Both Front and Rear Surface of Polycrystalline Silicon Thin Film Solar Cells

  • Park, Jongsung;Park, Nochang;Varlamov, Sergey
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.493-493
    • /
    • 2014
  • The manufacturing cost of thin-film photovoltics can potentially be lowered by minimizing the amount of a semiconductor material used to fabricate devices. Thin-film solar cells are typically only a few micrometers thick, whereas crystalline silicon (c-Si) wafer solar cells are $180{\sim}300\mu}m$ thick. As such, thin-film layers do not fully absorb incident light and their energy conversion efficiency is lower compared with that of c-Si wafer solar cells. Therefore, effective light trapping is required to realize commercially viable thin-film cells, particularly for indirect-band-gap semiconductors such as c-Si. An emerging method for light trapping in thin film solar cells is the use of metallic nanostructures that support surface plasmons. Plasmon-enhanced light absorption is shown to increase the cell photocurrent in many types of solar cells, specifically, in c-Si thin-film solar cells and in poly-Si thin film solar cell. By proper engineering of these structures, light can be concentrated and coupled into a thin semiconductor layer to increase light absorption. In many cases, silver (Ag) nanoparticles (NP) are formed either on the front surface or on the rear surface on the cells. In case of poly-Si thin film solar cells, Ag NPs are formed on the rear surface of the cells due to longer wavelengths are not perfectly absorbed in the active layer on the first path. In our cells, shorter wavelengths typically 300~500 nm are also not effectively absorbed. For this reason, a new concept of plasmonic nanostructure which is NPs formed both the front - and the rear - surface is worth testing. In this simulation Al NPs were located onto glass because Al has much lower parasitic absorption than other metal NPs. In case of Ag NP, it features parasitic absorption in the optical frequency range. On the other hand, Al NP, which is non-resonant metal NP, is characterized with a higher density of conduction electrons, resulting in highly negative dielectric permittivity. It makes them more suitable for the forward scattering configuration. In addition to this, Ag NP is located on the rear surface of the cell. Ag NPs showed good performance enhancement when they are located on the rear surface of our cells. In this simulation, Al NPs are located on glass and Ag NP is located on the rear Si surface. The structure for the simulation is shown in figure 1. Figure 2 shows FDTD-simulated absorption graphs of the proposed and reference structures. In the simulation, the front of the cell has Al NPs with 70 nm radius and 12.5% coverage; and the rear of the cell has Ag NPs with 157 nm in radius and 41.5% coverage. Such a structure shows better light absorption in 300~550 nm than that of the reference cell without any NPs and the structure with Ag NP on rear only. Therefore, it can be expected that enhanced light absorption of the structure with Al NP on front at 300~550 nm can contribute to the photocurrent enhancement.

  • PDF

Effect of Oxygen on the Microstructure and Mechanical Properties of Cr-O-N Coatings (Oxygen 함량에 따른 Cr-O-N 코팅막의 미세구조 및 기계적 특성에 관한 연구)

  • Yun, Jun-Seo;Kwon, Se-Hun;Park, In-Wook;Lee, Jeong-Du;Kim, Kwang-Ho
    • Journal of the Korean institute of surface engineering
    • /
    • v.42 no.5
    • /
    • pp.220-226
    • /
    • 2009
  • Cr-O-N coatings having different oxygen contents were deposited on Si wafer and SUS 304 substrates by an arc ion plating technique using Cr target in $Ar/O_2/N_2$ gaseous atmosphere. As increasing oxygen content in the coating, the microstructure of Cr-O-N coating changed from polycrystalline having NaCl structure to amorphous structure. Further increase of oxygen content resulted in phase transformation from amorphous to rhombohedral structure. From the variations of d value and average grain size, it was revealed that the maximum solubility of oxygen in Cr-O-N coating was about 21 at.%. And the maximum micro-hardness of 2751HK was obtained in this composition. The lowest friction coefficient was measured in the coating having 34.8 at.% of oxygen. However, more narrow width of wear track was found in the coating having 30.1 at.% of oxygen.

The Microwave Dielectric Properties of BMCT Ceramics (BMCT 세라믹스의 마이크로파 유전특성)

  • Lee, Mun-Gi;Choe, Ui-Seon;Ryu, Gi-Won;Lee, Yeong-Hui
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.8
    • /
    • pp.335-339
    • /
    • 2002
  • Ba(Mgl-xCox)TaO3[BMCT] ceramics were prepared by the conventional mixed oxide method. The ceramics were sintered at the temperature of 1525~$1625^{\circ}C$ for 5hr. in air. The crystal structure of BMCT ceramics was investigated by the XRD. The microstructure of the specimens were observed by SEM. The Microwave dielectric properties of BMCT specimens were investigated as a function of composition and sintering temperature. All BMCT ceramics sintered over 1575$^{\circ}C$ were showed a polycrystalline complex perovskite structure. The density of BMCT (90/10) specimen sintered at $1575^{\circ}C$ was 7.75g/㎤. As the Co contents decreased, the ordering parameter of B-site in BMCT increased. In the case of the BMCT(90/10) ceramics sintered at $1575^{\circ}C$ for 5 hours, dielectric constant, quality factor and temperature coefficient of resonant frequency for microwave dielectrics application were a good value o( 25, 17, 845 at 10㎓ and +2.4 ppm/${\circ}$, respectively.

Electrical properties of sputtered vanadium oxide thin films in Al/$VO_x$/Al device structure (Al/$VO_x$/Al 소자 구조에서 스퍼터된 바나듐 산화막의 전기적 특성)

  • 박재홍;최용남;최복길;최창규;김성진
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.460-463
    • /
    • 2000
  • The current-voltage characteristics of the sandwich system at different annealing temperatures and different bias voltages have been studied. In order to prepare the Al/V$O_X$/Al sandwich devices structure, thin films of vanadium oxide(V$O_X$) was deposited by r.f. magnetron sputtering from $V_2$$O_5$ target in 10% gas mixture of argon and oxygen, and annealed during lhour at different temperatures in vacuum. Crystall structure, surface morphology, and thickness of films were characterized through XRD, SEM and I-V characteristics were measured by electrometer. The films prepared below 20$0^{\circ}C$ were amorphous, and those prepared above 300 $^{\circ}C$were polycrystalline. At low fields electron injected to conduction band of vanadium oxide and formed space charge, current was limited by trap. Conduction mechanism at mid fields due to Schottky emission, while at high fields it changed to Fowler-Nordheim tunneling effects.

  • PDF

Optical and Electrical Properties of ZnO Hybrid Structure Grown on Glass Substrate by Metal Organic Chemical Vapor Deposition (유기금속화학증착법으로 유리기판 위에 성장된 산화아연 하이브리드 구조의 광학적 전기적 특성)

  • Kim, Dae-Sik;Kang, Byung Hoon;Lee, Chang-Min;Byun, Dongjin
    • Korean Journal of Materials Research
    • /
    • v.24 no.10
    • /
    • pp.543-549
    • /
    • 2014
  • A zinc oxide (ZnO) hybrid structure was successfully fabricated on a glass substrate by metal organic chemical vapor deposition (MOCVD). In-situ growth of a multi-dimensional ZnO hybrid structure was achieved by adjusting the growth temperature to determine the morphologies of either film or nanorods without any catalysts such as Au, Cu, Co, or Sn. The ZnO hybrid structure was composed of one-dimensional (1D) nanorods grown continuously on the two-dimensional (2D) ZnO film. The ZnO film of 2D mode was grown at a relatively low temperature, whereas the ZnO nanorods of 1D mode were grown at a higher temperature. The change of the morphologies of these materials led to improvements of the electrical and optical properties. The ZnO hybrid structure was characterized using various analytical tools. Scanning electron microscopy (SEM) was used to determine the surface morphology of the nanorods, which had grown well on the thin film. The structural characteristics of the polycrystalline ZnO hybrid grown on amorphous glass substrate were investigated by X-ray diffraction (XRD). Hall-effect measurement and a four-point probe were used to characterize the electrical properties. The hybrid structure was shown to be very effective at improving the electrical and the optical properties, decreasing the sheet resistance and the reflectance, and increasing the transmittance via refractive index (RI) engineering. The ZnO hybrid structure grown by MOCVD is very promising for opto-electronic devices as Photoconductive UV Detectors, anti-reflection coatings (ARC), and transparent conductive oxides (TCO).

Effects of Process Variables on the Microstructure and Gas Sensing Characteristics of Magnetron Sputtered $\textrm{SnO}_2$Thin Films (마그네트론 스퍼터링 증착 조건에 따른 $\textrm{SnO}_2$ 박막의 미세구조와 가스검지특성 변화)

  • Kim, Jong-Min;Moon, Jong-Ha;Lee, Byung-Teak
    • Korean Journal of Materials Research
    • /
    • v.9 no.11
    • /
    • pp.1083-1087
    • /
    • 1999
  • Microstructures and the gas-sensing characteristics of the $\textrm{SnO}_2$ thin films were studied, which were deposited at various conditions (rf power, sample temperature, $\textrm{O}_2$/Ar ratio) by the rf magnetron sputtering. As a result, six typical microstructures were derived, such as amorphous(A), amorphous mixed with polycrystalline grains (A+P), polycrystalline with random crystalographic orientation (P), fine columnar (FC), coarse columnar (CC) and Zone T (T) with dense fiberous structure. Typically, A, A+ P, and P structures were formed when no $\textrm{O}_2$ was added to the sputter gas, whereas FC, CC, and T structures were obtained when $\textrm{O}_2$ was added. The A structure formed at low rf power and low temperature, the A+P at high rf power and low temperature, and the P at high rf power and high temperature. The FC structure was obtained at low rf power and low temperature. the CC at low rf power and high temperature, and the T at high rf power and low temperature. Results of the gas-sensing test of the sensor chips fabricated from the typical films indicated that the fine columnar microstructure shows the highest sensitivity both at $300^{\circ}C$ and $400^{\circ}C$. It was proposed that this is due to the high specific surface area of the micro-columns.

  • PDF

Structural and Optical Properties of ZnS Thin Films Fabricated by Using RF Sputtering and Rapid Thermal Annealing Process for Buffer Layer in Thin Film Solar Cells (박막태양전지 버퍼층 적용을 위해 RF 스퍼터링 및 급속열처리 공정으로 제작한 황화아연 박막의 구조적 광학적 특성)

  • Park, Chan-Il;Jun, Young-Kil
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.4
    • /
    • pp.665-670
    • /
    • 2020
  • Buffer layer in CIGS thin-film solar cells improves energy conversion efficiency through band alignment between the absorption layer and the window layer. ZnS is a non-toxic II-VI compound semiconductor with direct-transition band gaps and n-conductivity as well as with excellent lattice matching for CIGS absorbent layers. In this study, the structural and optical properties of ZnS thin films, deposited by RF magnetron sputtering method and subsequently performed by the rapid thermal annealing treatment, were investigated for the buffer layer. The zincblende cubic structures along (111), (220), and (311) were shown in all specimens. The rapid thermal annealed specimens at the relatively low temperatures were polycrystalline structure with the wurtzite hexagonal structures along (002). Rapid thermal annealing at high temperatures changed the polycrystalline structure to the single crystal of the zincblende cubic structures. Through the chemical analysis, the zincblende cubic structure was obtained in the specimen with the ratio of Zn/S near stoichiometry. ZnS thin film showed the shifted absorption edge towards the lower wavelength as annealing temperature increased, and the mean optical transmittance in the visible light range increased to 80.40% under 500℃ conditions.

Suppression of Boron Penetration into Gate Oxide using Amorphous Si on $p^+$ Si Gated Structure (비정질 실리론 게이트 구조를 이용한 게이트 산화막내의 붕소이온 침투 억제에 관한 연구)

  • Lee, U-Jin;Kim, Jeong-Tae;Go, Cheol-Gi;Cheon, Hui-Gon;O, Gye-Hwan
    • Korean Journal of Materials Research
    • /
    • v.1 no.3
    • /
    • pp.125-131
    • /
    • 1991
  • Boron penetration phenomenon of $p^{+}$ silicon gate with as-deposited amorphous or polycrystalline Si upon high temperature annealing was investigated using high frequency C-V (Capacitance-Volt-age) analysis, CCST(Constant Current Stress Test), TEM(Transmission Electron Microscopy) and SIMS(Secondary Ion Mass Spectroscopy), C-V analysis showed that an as-deposited amorphous Si gate resulted in smaller positive shifts in flatband voltage compared wish a polycrystalline Si gate, thus giving 60-80 percent higher charge-to-breakdown of gate oxides. The reduced boron penetration of amorphous Si gate may be attributed to the fewer grain boundaries available for boron diffusion into the gate oxide and the shallower projected range of $BF_2$ implantation. The relation between electron trapping rate and flatband voltage shift was also discussed.

  • PDF