• 제목/요약/키워드: Polycrystalline Material

검색결과 359건 처리시간 0.03초

감압화학증착의 이단계 성장으로 실리콘 기판 위에 증착한 in-situ 인 도핑 다결정 실리콘 박막의 미세구조 조절 (Manipulation of Microstructures of in-situ Phosphorus-Doped Poly Silicon Films deposited on Silicon Substrate Using Two Step Growth of Reduced Pressure Chemical Vapor Deposition)

  • 김홍승;심규환;이승윤;이정용;강진영
    • 한국전기전자재료학회논문지
    • /
    • 제13권2호
    • /
    • pp.95-100
    • /
    • 2000
  • For the well-controlled growing in-situ heavily phosphorus doped polycrystalline Si films directly on Si wafer by reduced pressure chemical vapor deposition, a study is made of the two step growth. When in-situ heavily phosphorus doped Si films were deposited directly on Si (100) wafer, crystal structure in the film is not unique, that is, the single crystal to polycrystalline phase transition occurs at a certain thickness. However, the well-controlled polycrtstalline Si films deposited by two step growth grew directly on Si wafers. Moreover, the two step growth, which employs crystallization of grew directly on Si wafers. Moreover, the two step growth which employs crystallization of amorphous silicon layer grown at low temperature, reveals crucial advantages in manipulating polycrystal structures of in-situ phosphorous doped silicon.

  • PDF

조성 변화의 영향에 따른 BSCT 후막의 구조적 특성과 초전 특성 (Influence of composition variation on structural and pyroelectrical properties of BSCT thick films)

  • 노현지;이성갑;이영희
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 추계학술대회 논문집
    • /
    • pp.246-247
    • /
    • 2007
  • (Ba,Sr,Ca)$TiO_3$ powders, which were prepared by sol-gel method using a solution of Ba-acetate, Sr-acetate and Ca-acetate and Ti iso-propoxide, were mixed with organic vehicle and the BSCT thick films were fabricated by the screen-printing techniques on high purity alumina substrates. The structural and dielectric properties were investigated for various $Dy_2O_3$ doping contents. As a result of thermal analysis, the exothermic peak was observed at around $670^{\circ}C$ due to the formation of the polycrystalline perovskite phase. All BSCT thick films, sintered at $1420^{\circ}C$ for 2h, showed the typical XRD patterns of perovskite polycrystalline structure and no pyrochlore phase was observed. The average grain size of the specimens decreased with.

  • PDF

저온에서 제작된 고분자 기판 위의 poly-si TFT 제조 및 특성 (Fabrication and characteristics of low temperature poly-Si thin film transistor using Polymer Substrates)

  • 강수희;김영훈;한진우;서대식;한정인
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 학술대회 및 기술세미나 논문집 디스플레이 광소자
    • /
    • pp.62-63
    • /
    • 2006
  • In this paper, the characteristics of polycrystalline silicon thin-film transistors (poly-Si TFTs) fabricated on polymer substrates are investigated. The a-Si films was laser annealed by using a XeCl excimer laser and a four-mask-processed poly-Si TFT was fabricated with fully self-aligned top gate structure. The fabricated nMOS TFT showed field-effect mobility of $30cm2/V{\cdot}s$, on/off ratio of 105 and threshold voltage of 5 V.

  • PDF

3차원 결정소성 유한요소해석을 통한 변형 집합조직 예측 (Prediction of Deformation Texture Based on a Three-Dimensional Crystal Plasticity Finite Element Method)

  • 정경환;김동규;임용택;이용신
    • 소성∙가공
    • /
    • 제21권4호
    • /
    • pp.252-257
    • /
    • 2012
  • Crystallographic texture evolution during forming processes has a significant effect on the anisotropic flow behavior of crystalline material. In this study, a crystal plasticity finite element method (CPFEM), which incorporates the crystal plasticity constitutive law into a three-dimensional finite element method, was used to investigate texture evolution of a face-centered-cubic material - an aluminum alloy. A rate-dependent polycrystalline theory was fully implemented within an in-house program, CAMPform3D. Each integration point in the element was considered to be a polycrystalline aggregate consisting of a large number of grains, and the deformation of each grain in the aggregate was assumed to be the same as the macroscopic deformation of the aggregate. The texture evolution during three different deformation modes - uniaxial tension, uniaxial compression, and plane strain compression - was investigated in terms of pole figures and compared to experimental data available in the literature.

고온 M/NEMS용 3C-SiC 마이크로 히터 특성 (The characteristics of polycrystalline 3C-SiC microhotplates for high temperature M/NEMS)

  • 정재민;정귀상
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 추계학술대회 논문집 Vol.21
    • /
    • pp.252-252
    • /
    • 2008
  • The microhotplates consisting of a Pt-ased heating element on AlN/poly 3C-SiC layers were fabricated. The microhotplate has a $600{\mu}m{\times}600{\mu}m$ square shaped membrane which made of $1{\mu}m$ thick ploycrystalline 3C-SiC suspended by four legs. 3C-SiC is known for excellent chemical durability, mechanical strength and sustaining of high temperature. The membrane is fabricated by surface micromachining using oxidized Si sacrificial layer. The Pt thin film is used for heating material and resist temperature sensor. The fabrication methodology allows intergration of an array of heating material and resist temperature detector. For reasons of a short response time and a high sensitivity a uniform temperature profile is desired. The dissipation of microhotplate was examined by a IR thermoviewer and the power consumption was measured. Measured and simulated results are compared and analyzed. Thermal characterization of the microhotplates shows that significant reduction in power consumption was achieved using suspended structure.

  • PDF

다결정 다이아몬드를 이용한 미세 공구 제작과 이를 이용한 미세 복합 가공 (Fabrication of PCD Micro Tool and its Hybrid Micro Machining)

  • 도안카오후안;김보현;정도관;주종남
    • 한국정밀공학회지
    • /
    • 제28권6호
    • /
    • pp.694-700
    • /
    • 2011
  • Since polycrystalline diamond (PCD) has high hardness like diamond, it has been used as tool material for lathe and milling of non-ferrite material. A micro tool fabricated from PCD material can be used for micro machining of hard material such as tungsten carbide, glass, and ceramics. In this paper, micro PCD tools were fabricated by micro EDM (electrical discharge machining) and used for micro grinding of glass. Craters generated on the tool surface by EDM spark work as like grits in grinding process. The effects of tool shapes, tool roughness and PCD grain size were investigated. Also studied was a hybrid process combining electrochemical discharge machining (ECDM) and micro grinding for micro-structuring of glass.

Effects of Grain Size Distribution on the Mechanical Properties of Polycrystalline Graphene

  • Park, Youngho;Hyun, Sangil
    • 한국세라믹학회지
    • /
    • 제54권6호
    • /
    • pp.506-510
    • /
    • 2017
  • One of the characteristics of polycrystalline graphene that determines its material properties is grain size. Mechanical properties such as Young's modulus, yield strain and tensile strength depend on the grain size and show a reverse Hall-Petch effect at small grain size limit for some properties under certain conditions. While there is agreement on the grain size effect for Young's modulus and yield strain, certain MD simulations have led to disagreement for tensile strength. Song et al. showed a decreasing behavior for tensile strength, that is, a pseudo Hall-Petch effect for the small grain size domain up to 5 nm. On the other hand, Sha et al. showed an increasing behavior, a reverse Hall-Petch effect, for grain size domain up to 10 nm. Mortazavi et al. also showed results similar to those of Sha et al. We suspect that the main difference of these two inconsistent results is due to the different modeling. The modeling of polycrystalline graphene with regular size and (hexagonal) shape shows the pseudo Hall-Petch effect, while the modeling with random size and shape shows the reverse Hall-Petch effect. Therefore, this study is conducted to confirm that different modeling is the main reason for the different behavior of tensile strength of the polycrystalline structures. We conducted MD simulations with models derived from the Voronoi tessellation for two types of grain size distributions. One type is grains of relatively similar sizes; the other is grains of random sizes. We found that the pseudo Hall-Petch effect and the reverse Hall-Petch effect of tensile strength were consistently shown for the two different models. We suspect that this result comes from the different crack paths, which are related to the grain patterns in the models.

Modeling and multiple performance optimization of ultrasonic micro-hole machining of PCD using fuzzy logic and taguchi quality loss function

  • Kumar, Vinod;kumari, Neelam
    • Advances in materials Research
    • /
    • 제1권2호
    • /
    • pp.129-146
    • /
    • 2012
  • Polycrystalline diamond is an ideal material for parts with micro-holes and has been widely used as dies and cutting tools in automotive, aerospace and woodworking industries due to its superior wear and corrosion resistance. In this research paper, the modeling and simultaneous optimization of multiple performance characteristics such as material removal rate and surface roughness of polycrystalline diamond (PCD) with ultrasonic machining process has been presented. The fuzzy logic and taguchi's quality loss function has been used. In recent years, fuzzy logic has been used in manufacturing engineering for modeling and monitoring. Also the effect of controllable machining parameters like type of abrasive slurry, their size and concentration, nature of tool material and the power rating of the machine has been determined by applying the single objective and multi-objective optimization techniques. The analysis of results has been done using the MATLAB 7.5 software and results obtained are validated by conducting the confirmation experiments. The results show the considerable improvement in S/N ratio as compared to initial cutting conditions. The surface roughness of machined surface has been measured by using the Perthometer (M4Pi, Mahr Germany).

주파수 변화에 따른 다결정 $MgFe_{2}O_{4}$의 초기 투자율 특성 연구 (The study on the initial permeability of poly-crystalline $MgFe_{2}O_{4}$ With frequency)

  • 김성재;정명득;백종규
    • 한국자기학회지
    • /
    • 제4권2호
    • /
    • pp.94-99
    • /
    • 1994
  • 다결정 Mg-ferrite에 있어서 초기 복소 투자율과 소결체내 기공율과의 관계에 대한 연구 논문으로서, $MgFe_{2}O_{4}$의 초기 투자율의 주파수 특성에 있어서 입경이 큰 소결체를 제외 하고 Snoek 이론이 잘 적용되었다. 50-80[MHz] 주파수 범위내에서 자구 회전에 따른 초기 투자율의 실수부, $\mu$'이 1이되는 주파수가 관찰되었다. 다결정 Mg-ferrite에 있어서 초기복소 투자율과 소 결체내 기공율과의 관계부터 이방성 자기장이 주 성분일 것으로 사료되는 미지의 내부 자기장을 계 산한 결과 약 100[Oe]로서 조사되었으며, 이는 단결정 $MgFe_{2}O_{4}$ 시편으로부터 보고되고 있는 이방성 자기장의 약 1/2로 나타났다. 이러한 차이는 소결체 시편내 포함되어 있는 자벽의 영향 에 주로 기인함을 알 수 있다.

  • PDF

AlN 완충층을 이용한 다결정 3C-SiC 박막의 결정성장 (Crystal growth of polyctystalline 3C-SiC thin films on AlN buffer layer)

  • 김강산;정귀상
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 하계학술대회 논문집 Vol.8
    • /
    • pp.333-334
    • /
    • 2007
  • This paper describes the characteristics of poly (polycrystalline) 3C-SiC grown on SiOz and AlN substrates, respectively. The crystalline quality of poly 3C-SiC was improved from resulting in decrease of FWHM (full width half maximum) of XRD by increasing the growth temperature. The minimum growth temperature of poly 3C-SiC was $1100^{\circ}C$. The surface chemical composition and the electron mobility of poly 3C-SiC grown on each substrate were investigated by XPS and Hall Effect, respectively. The chemical compositions of surface of poly 3C-SiC films grown on $SiO_2$ and AlN were not different. However, their electron mobilities were $7.65\;cm^2/V.s$ and $14.8\;cm^2/V.s$, respectively. Therefore, since the electron mobility of poly 3C-SiC films grown on AlN buffer layer was two times higher than that of 3C-SiC/$SiO_2$, a AlN film is a suitable material, as buffer layer, for the growth of poly 3C-SiC thin films with excellent properties for M/NEMS applications.

  • PDF