• Title/Summary/Keyword: Polyaniline (PANI)

Search Result 130, Processing Time 0.027 seconds

Surface Morphology and Electron Transport Properties of Composite Films by Poly-N-vinylcarbazole/Polyaniline

  • Basavaraja, C.;Jo, Eun-Ae;Kim, Bong-Sung;Mallikarjuna, H.;Huh, Do-Sung
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.10
    • /
    • pp.2967-2972
    • /
    • 2010
  • Poly-N-vinylcarbazole/polyaniline (PVK-PANI) composites are synthesized by varying target loading concentrations of aniline (0.025 - 0.1 M). The surface morphology of the composites is studied by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The temperature-dependent DC conductivity of PVK-PANI composite films was studied at the temperature range of 300 - 500 K. The data suggest that the conductivity increase with an increase in aniline concentration in the composite with an increase in temperature. Further based on the conductivity behavior we can suggest that the PVK-PANI composites show a semiconducting behavior with a positive temperature coefficient of resistivity (TCR). The enhanced conductivity and the positive TCR of the PVK-PANI composite films may be due to the strong interaction between PANI and PVK in the composite films.

Surface Coating and Electrochemical Properties of LiNi0.8Co0.15Al0.05O2 Polyaniline Composites as an Electrode for Li-ion Batteries

  • Chung, Young-Min;Ryu, Kwang-Sun
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.8
    • /
    • pp.1733-1737
    • /
    • 2009
  • A new cathode material based on Li$Ni_{0.8}Co_{0.15}Al_{0.05}O_2$ (LNCA)/polyaniline (Pani) composite was prepared by in situ self-stabilized dispersion polymerization in the presence of LNCA. The materials were characterized by fourier transform infrared spectroscopy (FT-IR), ultraviolet-visible spectroscopy (UV-Vis), X-ray diffraction (XRD), and scanning electron microscopy (SEM). Electrochemical properties including galvanostatic charge-discharge ability, cyclic voltammetry (CV), capacity, cycling performance, and AC impedance were measured. The synthesized LNCA/Pani had a similar particle size to LNCA and exhibited good electrochemical properties at a high C rate. Pani (the emeraldine salt form) interacts with metal-oxide particles to generate good connectivity. This material shows good reversibility for Li insertion in discharge cycles when used as the electrode of lithium ion batteries. Therefore, the Pani coating is beneficial for stabilizing the structure and reducing the resistance of the LNCA. In particular, the LNCA/Pani material has advantageous electrochemical properties.

Synthesis and Characteristics of Organic Soluble Polyaniline by Emulsion Polymerization (유화 중합법에 의한 유기 용매 가용형 폴리아닐린의 합성 및 그 특성)

  • 김진열;권시중;한성원;김응렬
    • Polymer(Korea)
    • /
    • v.27 no.6
    • /
    • pp.549-554
    • /
    • 2003
  • Emeraldine salt of polyaniline-dodecylbenzenesulfdnic acid (PANI-DBSA) in organic solvents such as toluene and xylene was obtained by a direct one-step emulsion polymerization technique. When the molar ratio of DBSA to aniline monomer was 1.5:1, its solubility and electric property showed a maximum value and then the solid contents of PANI-DBSA was 8 wt% in toluene. The cast film of PANI-DBSA with no binder was obtained on glass or plastic substrates under ambient conditions. PANI solution can be also easily blended with polyurethane and polystyrene polymers in toluene. Improved electrical performance up to 5 S/cm was achieved with good light-transmittance up to 70% at 500 m thickness. They also showed more homogeneous morphology than that prepared with PANI-DBSA kom aqueous dispersion polymerization. The partially dispersed PANI-DBSA showed particles sizes of 50-400 m in organic solvents and their XRD pattern were observed from the powder sample.

Synthesis of anisotropic defective polyaniline/silver nanocomposites

  • Kamblea, Vaishali;Kodwania, Gunjan;Sridharkrishna, Ramdoss;Ankamwar, Balaprasad
    • Advances in nano research
    • /
    • v.2 no.2
    • /
    • pp.111-119
    • /
    • 2014
  • The chemical synthesis of anisotropic defective polyaniline/Ag composite (PANI/Ag) is explored using silver nitrate ($AgNO_3$) as the precursor material. This study provides a simple method for the formation of PANI/Ag nanocomposites at two different aniline concentrations $5{\mu}l$ (PANC5) and $10{\mu}l$ (PANC10). The composite PANC5 exhibits UV-Visible absorption peaks at 436 nm and 670 nm whereas, PANC10 exhibits absorption peaks at 446 nm and 697 nm. This shift is caused by the strong interaction between polyaniline and silver. The characterized FTIR peaks observed at around $3410cm^{-1}$ (PANC5) and $3420cm^{-1}$ (PANC10) was due to the N-H stretching vibrations. The appearance of a broad band instead of a sharp peak can be attributed due to the presence of a high concentration of N-H groups in the nanocomposite. The TEM images show that the sample contains defective spherical, truncated triangular and rod shaped particles. The results showed that the PANI/Ag nanocomposites are composed of nano-sized particles of 43-53 nm that contain Ag domains of 33-37 nm with polymer thickness 5.7-11.2 nm at two different aniline concentrations.

Fabrication and Characterization of UV-curable Conductive Transparent Film with Polyaniline Nanofibers (폴리아닐린 나노섬유를 이용한 광경화형 전도성 투명필름의 제조 및 특성)

  • Kim, Sung-Hyun;Song, Ki-Gook
    • Polymer(Korea)
    • /
    • v.36 no.4
    • /
    • pp.531-535
    • /
    • 2012
  • Conductive polyaniline (PANI) nanofibers in UV-curable resin were used for a transparent conductive film. The emeraldine-salt PANI (ES-PANI) nanofibers were prepared by chemical oxidation polymerization of aniline, which could be changed into emeraldine-base PANI by dedoping. EB-PANI nanofibers as a precursor for conductive fillers were thereby transformed into re-dpoed PANI (rES-PANI) by dodecylbenzenesulfonic acid in the UV-curable resin solution. rES-PANI nanofibers have high conductivity and long-term stability in the solution without a defect of nanostructure. The resulting conductive resin solution was proved to be highly stable where no precipitation of rES-PANI fillers was observed over a period of 3 months. The transparent film was spin-casted on a poly(methyl methacrylate) sheet of thickness ca. $5{\mu}m$. A surface resistance of $6.5{\times}10^8{\Omega}/sq$ and transmittance at 550 nm of 91.1% were obtained for the film prepared with a concentration of 1.4 wt% rES-PANI nanofibers in the solution. This transformation process of rES-PANI from ES-PANI by dedoping-redoping can be an alternative method for the preparation of an antistatic protection film with controllable surface resistance and optical transparencies with the PANI concentration in UV-curable solution.

Characterization of Biodegradable Conductive Composite Films with Polyaniline(1) (폴리아닐린을 함유한 도전성 복합필름의 제조 및 특성 연구(1))

  • Lee, Soo;Seong, Eun-Suk
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.2
    • /
    • pp.218-224
    • /
    • 2014
  • Biodegradable conductive composite films of polylactic acid(PLA) were prepared with various amounts of polyaniline(PAni) doped with dodecylbenzenesulphonic acid (DBSA) by solution blending technique to identify their mechanical and electric properties. 15 mol% of DBSA doped PAni was easily obtained by polymerizing of aniline in the presence of APS and DBSA in THF at $0^{\circ}C$. FE SEM characterization showed that PAni were well spread on the PLA domains. The tensile strength of composite film with 15 wt% of PAni was significantly decreased from $565.3kg_f/cm^2$ for PLA film itself to $309.7kg_f/cm^2$. Elongations of all PAni/PLA composite films were also decreased up to 3-6%. Electrical conductivity of $2.9{\times}10^{-3}$ S/cm could be achieved for the composite film containing 15 wt% of PAni-DBSA. Thermal stability of these composite films measured by thermogravimetric analysis(TGA) showed a slight decrease with the amount of PAni in PAni/PLA composite films at temperature lower than $300^{\circ}C$. However, the final weight of char was strongly depended with the amount of PAni in original composite films. Conclusively, PAni/PLA composite films containing more than a 15 wt% of PAni could be used for intercepting electromagnetic and preventing electrostatic applications.

Layer-by-Layer Self-Assembled Multilayer Film Composed of Polyaniline, Graphene Oxide, and Phytic Acid for Supercapacitor Application (슈퍼커패시터 활용성 자가조립된 폴리아닐린, 그래핀 옥사이드 그리고 피트산으로 구성된 다층 초박막)

  • Lee, Myungsup;Hong, Jong-Dal
    • Journal of the Korean Chemical Society
    • /
    • v.59 no.1
    • /
    • pp.36-44
    • /
    • 2015
  • This article describes synthesis and electrochemical properties of layer-by-layer self-assembled multilayer film composed of polyaniline (PANi), graphene oxide (GO) and phytic acid (PA), whereby the GO was electrochemically reduced to ERGO, resulting in $(PANi/ERGO/PANi/PA)_{10}$ film electrode. Especially, we examined the possibility to improve the volumetric capacitive property of $(PANi/ERGO)_{20}$ film electrode via combining a spherical hexakisphosphate PA nanoparticle into the multilayer film that would dope PANi properly and also increase the porosity and surface area of the electrode. The electrochemical performances of the multilayer film electrodes were investigated using a three-electrode configuration in 1 M $H_2SO_4$ electrolyte. As a result, the $(PANi/ERGO)_{20}$ electrode showed the volumetric capacitance of $666F/cm^3$ at a current density of $1A/cm^3$, which was improved to the volumetric capacitance of $769F/cm^3$ for the $(PANi/ERGO/PANi/PA)_{10}$ electrode, in addition to the cycling stability maintained to 79.3% of initial capacitance after 1000 cycles. Thus, the electrochemical characteristics of the $(PANi/ERGO)_{20}$ electrode, which was densely packed by ${\pi}-{\pi}$ stacking between the electron-rich conjugate components, could have been improved through structural modification of the multilayer film via combining a spherical hexakisphosphate PA nanoparticle into the multilayer film.

Capacitance behaviors of Polyaniline/Graphene Nanosheet Composites Prepared by Aniline Chemical Polymerization

  • Kim, Jieun;Park, Soo-Jin;Kim, Seok
    • Carbon letters
    • /
    • v.14 no.1
    • /
    • pp.51-54
    • /
    • 2013
  • In this study, polyaniline (PANI)/graphene nanosheet (GNS) composites were synthesized through chemical oxidation polymerization by changing the weight ratio of aniline monomers. To examine the morphological structure of the composites, scanning electron microscopy and transmission electron microscopy (TEM) were conducted. TEM results revealed that fibril-like PANI with a diameter of 50 nm was homogeneously coated on the surface of the GNS. The electrochemical properties of the composites were studied by cyclic voltammetry in 1 M $H_2SO_4$ electrolyte. Among the prepared samples, the PANI/GNS (having 40 wt% aniline content) showed the highest specific capacitance, 528 $Fg^{-1}$, at 10 $mVs^{-1}$. The improved performance was attributed to the GNS, which provides a large number of active sites and good electrical conductivity. The resulting composites are promising electrode materials for high capacitative supercapacitors.

Preparation and Properties of Waterborne-Polyurethane Coating Materials Containing Conductive Polyaniline

  • Kim, Han-Do;Kwon, Ji-Yun;Kim, Eun-Young
    • Macromolecular Research
    • /
    • v.12 no.3
    • /
    • pp.303-310
    • /
    • 2004
  • We have prepared an aqueous dispersion of poly(aniline-dodecyl benzene sulfonic acid complex) (PANI-DC) that has an intrinsic viscosity (〔η〕) near 1.3 dL/g using aniline as a monomer, dodecyl benzene sulfonic acid(DBSA) as a dopant/emulsifier, and ammonium peroxodisulfate(APS) as an oxidant. We found that the electrical conductivity of a PANI-DC pellet was 0.7 S/cm. A waterborne-polyurethane (WBPU) dispersion, obtained from isophorone diisocyanate/polytetramethylene oxide glycol/dimethylol propionic acid/ethylene diamine/triethylene amine, was used as a matrix polymer. We prepared blend films of WBPU/PANI-DC with variable weight ratios (from 99/1 to 66/34) by solution blending/casting and investigated the effects that the PANI-DC content has on the mechanical and dynamic mechanical properties, hardness, electrical conductivity, and antistaticity of these films. The tensile strength, percentage of elongation, and hardness of WBPU/PANI-DC blend films all decreased markedly upon increasing the PANI-DC content. The antistatic half-life time ($\tau$$\sub$$\frac{1}{2}$/) of pure WBPU film was about 110 s, but we found that those of WBPU/ultrasound-treated PANI-DC blend films decreased exponentially from 1.2 s to 0.1 s to almost 0 s upon increasing the PANI-DC content from 1 wt% to 15 wt% to > 15 wt%, respectively.

The Influence of Aniline to Acid Composition on the Electrical Conductivity of PANI-PAAMPSA

  • Yoo, Joung Eun;Bae, Joonho
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.12
    • /
    • pp.3825-3828
    • /
    • 2013
  • In this study, the influences of aniline to acid composition were investigated on the electrical conductivity of PANI-PAAMPSA. The ratio of aniline to sulfonic acid groups was optimized for the maximum conductivity of PANI-PAAMPSA. The conductivity is strongly correlated with the electronic structure of PANI-PAAMPSA; the highest conductivity of PANI-PAAMPSA was observed when PANI has the longest conjugation length.