• Title/Summary/Keyword: Polyamide resin

Search Result 43, Processing Time 0.024 seconds

Cure Reactions of Epoxy/Anhydride/(Polyamide Copolymer) Blends

  • Youngson Choe;Kim, Wonho
    • Macromolecular Research
    • /
    • v.10 no.5
    • /
    • pp.259-265
    • /
    • 2002
  • The cure kinetics of blends of epoxy (DGEBA, diglycidyl ether of bisphenol A)/anhydride resin with polyamide copolymer, poly(dimmer acid-co-alkyl polyamine), were studied using differential scanning calorimetry (DSC) under isothermal condition. On increasing the amount of polyamide copolymer in the blends, the reaction rate was increased and the final cure conversion was decreased. Lower values of final cure conversions in the epoxy/(polyamide copolymer) blends indicate that polyamide hinders the cure reaction between the epoxy and the curing agent. The value of the reaction order, m, for the initial autocatalytic reaction was not affected by blending polyamide copolymer with epoxy resin, and the value was approximately 1.3, whereas the reaction order, n, for the general n-th order of reaction was increased by increasing the amount of polyamide copolymer in the blends, and the value increased from 1.6 to 4.0. A diffusion-controlled reaction was observed as the cure conversion increased and the rate equation was successfully analyzed by incorporating the diffusion control term for the epoxy/anhydride/(polyamide copolymer) blends. Complete miscibility was observed in the uncured blends of epoxy/(polyamide copolymer) up to 120 $^{\circ}C$, but phase separations occurred in the early stages of the curing process at higher temperatures than 120 "C. During the curing process, the cure reaction involving the functional group in polyamide copolymer was detected on a DSC thermogram.gram.

Effect of surface treatment methods on the shear bond strength of auto-polymerized resin to thermoplastic denture base polymer

  • Koodaryan, Roodabeh;Hafezeqoran, Ali
    • The Journal of Advanced Prosthodontics
    • /
    • v.8 no.6
    • /
    • pp.504-510
    • /
    • 2016
  • PURPOSE. Polyamide polymers do not provide sufficient bond strength to auto-polymerized resins for repairing fractured denture or replacing dislodged denture teeth. Limited treatment methods have been developed to improve the bond strength between auto-polymerized reline resins and polyamide denture base materials. The objective of the present study was to evaluate the effect of surface modification by acetic acid on surface characteristics and bond strength of reline resin to polyamide denture base. MATERIALS AND METHODS. 84 polyamide specimens were divided into three surface treatment groups (n=28): control (N), silica-coated (S), and acid-treated (A). Two different auto-polymerized reline resins GC and Triplex resins were bonded to the samples (subgroups T and G, respectively, n=14). The specimens were subjected to shear bond strength test after they were stored in distilled water for 1 week and thermo-cycled for 5000 cycles. Data were analyzed with independent t-test, two-way analysis of variance (ANOVA), and Tukey's post hoc multiple comparison test (${\alpha}=.05$). RESULTS. The bond strength values of A and S were significantly higher than those of N (P<.001 for both). However, statistically significant difference was not observed between group A and group S. According to the independent Student's t-test, the shear bond strength values of AT were significantly higher than those of AG (P<.001). CONCLUSION. The surface treatment of polyamide denture base materials with acetic acid may be an efficient and cost-effective method for increasing the shear bond strength to auto-polymerized reline resin.

Color stability, water sorption and cytotoxicity of thermoplastic acrylic resin for non metal clasp denture

  • Jang, Dae-Eun;Lee, Ji-Young;Jang, Hyun-Seon;Lee, Jang-Jae;Son, Mee-Kyoung
    • The Journal of Advanced Prosthodontics
    • /
    • v.7 no.4
    • /
    • pp.278-287
    • /
    • 2015
  • PURPOSE. The aim of this study was to compare the color stability, water sorption and cytotoxicity of thermoplastic acrylic resin for the non-metal clasp dentures to those of thermoplastic polyamide and conventional heat-polymerized denture base resins. MATERIALS AND METHODS. Three types of denture base resin, which are conventional heat-polymerized acrylic resin (Paladent 20), thermoplastic polyamide resin (Bio Tone), thermoplastic acrylic resin (Acrytone) were used as materials for this study. One hundred five specimens were fabricated. For the color stability test, specimens were immersed in the coffee and green tee for 1 and 8 weeks. Color change was measured by spectrometer. Water sorption was tested after 1 and 8 weeks immersion in the water. For the test of cytotoxicity, cell viability assay was measured and cell attachment was analyzed by FE-SEM. RESULTS. All types of denture base resin showed color changes after 1 and 8 weeks immersion. However, there was no significant difference between denture base resins. All specimens showed significant color changes in the coffee than green tee. In water sorption test, thermoplastic acrylic resin showed lower values than conventional heat-polymerized acrylic resin and thermoplastic polyamide resin. Three types of denture base showed low cytotoxicity in cell viability assay. Thermoplastic acrylic resin showed the similar cell attachment but more stable attachment than conventional heat-polymerized acrylic resin. CONCLUSION. Thermoplastic acrylic resin for the non-metal clasp denture showed acceptable color stability, water sorption and cytotoxicity. To verify the long stability in the mouth, additional in vitro studies are needed.

A Study on the Three Phase Glass Fiber/Nylon 6/Polyproylene Composites (나일론 6과 폴리프로필렌 수지에 유리섬유가 보강된삼상 복합재료에 관한 연구)

  • 서문호
    • The Korean Journal of Rheology
    • /
    • v.10 no.2
    • /
    • pp.57-64
    • /
    • 1998
  • A pultrusion resin impregnation (PRI) die, which has been developed recently in our laboratory, was used to pre-pare various composite system. The continuous fiber reinforced composites of glass fiber/polypropylene(GFPP) and glass fiber/polyamide 6 (GFPA) were first manufactured by means of the PRI die and then cut into chopped pellets of predet-ermined length. These pellets and either virgin or modified thermoplastic resin were melt-mixed by a twin screw extruder to prepare GF/PA/PP and GF/PA/PPMA system. The mechanical properties of these blends were investigated and discussed in terms of their morphological observations. These preliminary results revealed that this new impregnation die could be suc-cessfully applied to produce prepregs suitavle for the final shaping process.

  • PDF

Peel strength of denture liner to PMMA and polyamide: laser versus air-abrasion

  • Korkmaz, Fatih Mehmet;Bagis, Bora;Ozcan, Mutlu;Durkan, Rukiye;Turgut, Sedanur;Ates, Sabit Melih
    • The Journal of Advanced Prosthodontics
    • /
    • v.5 no.3
    • /
    • pp.287-295
    • /
    • 2013
  • PURPOSE. This study investigated the effect of laser parameters and air-abrasion on the peel strength of silicon-based soft denture liner to different denture resins. MATERIALS AND METHODS. Specimens (N=180) were prepared out of three different denture base resins (Rodex, cross-linked denture base acrylic resin; Paladent, heat-cured acrylic resin; Deflex, Polyamide resin) ($75mm{\times}25mm{\times}3mm$). A silicon-based soft denture liner (Molloplast B) was applied to the denture resins after the following conditioning methods: a) Air-abrasion ($50{\mu}m$), b) Er,Cr:YSGG laser (Waterlase MD Turbo, Biolase Technology) at 2 W-20 Hz, c) Er,Cr:YSGG laser at 2 W-30 Hz, d) Er,Cr:YSGG laser at 3 W-20 Hz, e) Er,Cr:YSGG laser at 3 W-30 Hz. Non-conditioned group acted as the control group. Peel test was performed in a universal testing machine. Failure modes were evaluated visually. Data were analyzed using two-way ANOVA and Tukey's test (${\alpha}$=.05). RESULTS. Denture liner tested showed increased peel strength after laser treatment with different parameters ($3.9{\pm}0.4-5.58{\pm}0.6$ MPa) compared to the control ($3.64{\pm}0.5-4.58{\pm}0.5$ MPa) and air-abraded groups ($3.1{\pm}0.6-4.46{\pm}0.3$ MPa), but the results were not statistically significant except for Paladent, with the pretreatment of Er,Cr:YSGG laser at 3 W-20 Hz. Polyamide resin after air-abrasion showed significantly lower peel strength than those of other groups ($3.1{\pm}0.6$ MPa). CONCLUSION. Heat-cured acrylic resin, PMMA, may benefit from Er,Cr:YSGG laser treatment at 3 W-20 Hz irradiation. Air-abrasion of polyamide resins should be avoided not to impair their peel bond strengths to silicon-based soft denture liners.

Functional Improvement of Hot Melt Adhesive Using Polyamide Type Resin -(I) Physical Properties of Adhesives- (폴리아미드계 수지를 이용한 핫멜트 접착제의 기능 향상 -(I) 접착제의 물성-)

  • Chun, Young-Sik;Hong, Young-Keun;Chung, Kyung-Ho
    • Applied Chemistry for Engineering
    • /
    • v.7 no.1
    • /
    • pp.194-202
    • /
    • 1996
  • Hot melt adhesive based on the polyamide resin was studied to improve the conventional hot melt adhesives such as ethylene-vinyl acetate which have inherent problems against creep and heat resistance. It was found that the terpolymer of nylons6, nylon66, and nylon12 or the nylon blend instead of nylon homopolymer was suitable base resin for hot melt adhesives, since the disruption of regularity in the polymer chains reduced the crystallinity, resulting in lower melting point and melt viscosity. Also, the rheological properties of the polyamide based hot melt adhesive could be controlled by the incorporation of terpene resin, butyl benzyl phthalate, and paraffin wax. The results of melt viscosities and tensile properties of adhesive itself indicated that the optimum adhesion properties could be obtained through the blending of CM831/843P resins with weight ratio 75/25~50/50. The adhesion between steel and steel was tested by using lap shear geometry. It was found that the surface roughness of steel affected the adhesion strength.

  • PDF

Functional Improvement of Hot Melt Adhesive Using Polyamide Type Resin - (III) The Effect of Wax and Filler - (폴리아미드계 수지를 이용한 핫멜트 접착제의 기능 향상 - (III) 왁스와 충전제의 영향 -)

  • Chung, Kyung-Ho;Han, Kyung-A;Cho, Wook-Sang
    • Applied Chemistry for Engineering
    • /
    • v.16 no.6
    • /
    • pp.827-833
    • /
    • 2005
  • This study focused on the establishment of optimum formulation of polyamide based hot melt adhesive through adhesive synthesis, study of physical property, and adhesion study. In the previous study, the optimum formulation of base resins (CM831, 843P) and tackifying resin (terpene resin) was determined. The weight ratio of CM831, 843P, and terpene resin was 75, 25, and 10, respectively. Based on the optimum formulation, the effect of wax and filler addition was examined in this study. According to the results, the maximum adhesion strength with the steel could be obtained by the addition of 5 wt% of polyethylene wax although the melt viscosity of adhesive decreased continuously with the addition of wax. In the case of filler, the optimum adhesion property could be achieved by the addition of 10 wt% of talc. However, the addition of filler caused little increase of melt viscosity of adhesive.

Preparation and Physical Properties of Silicone Softner for PP Finish (PP 가공용 실리콘 유연제의 제조와 물성연구)

  • Im, Wan-Bin;Yang, In-Mo;Jung, Choong-Ho;Hahm, Hyun-Sik;Park, Hong-Soo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.117-122
    • /
    • 2002
  • A silicone softner (SS-5), a permanent press (PP) finish, was prepared by blending silicone oil KF-96 (as a lubricating component) and beef tallow hardened oil (as a softening component) which was synthesized from fatty polyamide salts. The prepared SS-5 and the PP finishing resin were applied to PP finishing cotton cloth and P/C gingham sample by one-bath method. The properties such as crease recovery, tear strength, and bending resistance were tested. The samples treated with SS-5 and PP finishing resin showed improved properties when comparing with the untreated ones, with the ones treated only with PP finishing resin, with ones treated with commercial PP finishing softners and PP finishing resin. The grades of fabric samples treated with 3% SS-5 were fifth grade in the bending resistance test.

Determination of Synthetic Food Colours by HPLC with Photodiode Array Detector (HPLC를 이용한 타르색소의 분리정량)

  • Yang, Ho-Chul;Heo, Nam-Chil
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.1
    • /
    • pp.30-35
    • /
    • 1999
  • A simple, rapid, efficient method is for extraction of 13 synthetic water-soluble food colours (Tartrazine, Amarnth, Indigo carmine, New coccine, Sunset yellow FCF, Allura red AC, Eosine, Fast Green FCF, Brilliant Blue FCF, Erythrosine, Acid red, phloxine, Rose Bengal) by polyamide resin and for their quantitative by high performance liquid chromatography (HPLC). Colours (coal-tar dyes) were extracted with polyamide resin and then determinated by HPLC. The HPLC conditions using a reverse phase partition type column $(Nova-pak\;C_{18})$, photodiode array (PDA) detector and 1% Ammonium acetate / 60% acetonitrile in water as eluent, were acceptable for various kinds of colorants. By the use of the proposed method, a survey of coal-tar dyes was carried out on 20 samples and that were detected $4.76{\sim}133.47\;ppm$.

  • PDF

Electrical characteristics of Engineering Polymer (Engineering Polymer의 전기적 특성)

  • Park, Jae-Yeol;Park, Sung-Hee;Kwon, Oh-Deok;Kang, Seong-Hwa;Lim, Kee-Joe
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.235-238
    • /
    • 2003
  • Thermo-plastic has generally bad electrical characteristics at high temperature comparing to thermoset-plastics when the plastic apply to electrical power apparatus as an electrical insulator. To solve the problem, we study engineering plastics such as Polyamide and Polyphthalamide as a base resin. And filler of the engineering plastics is glass fiber. Electrical characteristics studied are permittivity, loss factor and breakdown strength according to temperature and frequency of measuring signal. Electrical characteristics of Polyphthalamide has good temperature and frequency dependency comparing to those of Polyamide.

  • PDF