• Title/Summary/Keyword: PolyEthylene (PE)

Search Result 39, Processing Time 0.022 seconds

The Preparation and Electrochemical Properties of Pore-filled and Polystyrene-based Anion-exchange Membranes Using Poly(ethylene glycol)methyl Ether Methacrylate (Poly(ethylene glycol)methyl Ether Methacrylate를 이용한 세공충전 폴리스티렌계 음이온 교환막의 제조 및 전기화학적 특성)

  • Mun, Hye Jin;Choi, Jae Hak;Hong, Young Taik;Chang, Bong Jun
    • Membrane Journal
    • /
    • v.25 no.6
    • /
    • pp.515-523
    • /
    • 2015
  • While commercial polystyrene-based ion exchange membranes have simple manufacturing processes, they also possess poor durability due to their brittleness. Poly(ethylene glycol)methyl ether methacrylate with hydrophilic side chains of poly(ethylene glycol) was used as a co-monomer to make the membranes have improved flexibility. Hydrophilicity/hydrophobicity of the anion exchange membranes were able to be adjusted by varying the chain lengths of the poly(ethylene glycol). For the preparation of the anion exchange membranes, a porous PE substrate was immersed into monomer solutions and thermally polymerized. The prepared membranes were subsequently reacted with trimethylamine to produce anion exchange functional groups, Quaternary ammonium salts. The prepared pore-filled anion exchange membranes were evaluated in terms of ion exchange capacity, electric resistance, elongation at break and water uptake.

Study on Compatibilities between Asphalt and Various Ionomers (아스팔트와 이오노머 (ionomer)의 상용성에 관한 연구)

  • Son, Young-Gon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.9
    • /
    • pp.4267-4273
    • /
    • 2011
  • In order to select the best compatibilizer for PE/asphalts mixtures, compatibilities of poly(ethylene-co-acrylic acid) and poly(ethylene-co-methacrylic acid) based ionomers with asphalts were investigated via optical microscopy, thermal analysis and rheology. By comparing the polarities of ionomers through an ultimate adsorption of moisture, it was observed that the compatibilities of ionomers increase with the increases of the polarities. By rheological investigations, some of ionomer were observed to be not only compatible but also miscible with asphalts.

Experimental Evaluation on Structural Analysis of the Shear Key between Concrete-PE Modules (콘크리트-PE 부유체 모듈의 케이싱형 전단키 구조성능 실험평가)

  • Jeongsoo Kim;Yeon-Ju Jeong
    • Journal of the Society of Disaster Information
    • /
    • v.19 no.3
    • /
    • pp.545-553
    • /
    • 2023
  • Purpose: This study proposes a casing type of shear key to connect with floating breakwater modules composed of concrete and PE(Poly Ethylene), and evaluates the structural performance of the shear key. Method: According to Eurocode, extreme load tests of shear keys with several cross-sections were conducted. Result: The maximum shear resistance of the casing type is 1.5 times than those of the plain concrete type, and the use of the casing shear key leads to ductile behaviors after its peak shear resistance than the shear key made of reinforced concrete. Conclusion: The use of the proposed casing type of shear key will contributes to improve the safety of the shear connection between modular structures.

Study on Combustion Characteristic of GOx/PE Hybrid Rocket According to Port Diameter (GOx/PE 하이브리드 로켓의 포트 직경에 따른 연소특성 연구)

  • Choi, Jae-Sung;Huh, Hwan-Il
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.692-693
    • /
    • 2010
  • In this study, we analyze the combustion characteristic of GOx/PE hybrid rocket, by changing port diameter of the propellant. To study combustion characteristics of hybrid rocket, GOx is used for oxidizer and PolyEthylene is used for solid propellant. Regression rate and O/F ratio of the rocket is measured and presented.

  • PDF

Estimation of Structural Safety for PolyEthylene (PE) Floating Platforms with API & AISC Standards (API & AISC 기준을 적용한 PolyEthylene (PE) 부유식 플랫폼의 구조 안전성 검토)

  • Seo, Kwang-Cheol;Nam, Taek-Kun;Park, Joo-Shin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.2
    • /
    • pp.237-243
    • /
    • 2019
  • Floating platforms made of PE (PolyEthylene) are often located in shallows of seas, rivers or lakes. They are widely used for marine pensions, marine pontoons, marine bridges, etc. These products are characterized by good flexibility, recyclability, chemical resistance and weatherability with corrosion resistance. Existing PE floating platforms have a simple structure in which one pipe is fastened to one bracket, but this has limited application, even if a user modifies the arrangement. Therefore, we developed a structure that allows buoyancy pipes of various sizes to be fastened to one bracket and verified the structural safety of the product using the finite element method. From the results of structural analysis for buoyancy pipes of different diameters, the maximum stress ratio was 0.78 compared with allowable criteria of 1.0, which represented sufficient safety for a model with 500 mm diameter pipes. Based on the results of this study, further research to evaluate the structural safety of various floating platforms can be carried out in the further; it will also be necessary to establish related evaluation criteria.

Enhancement of Compatibility and Toughening of Commingled Packaging Film Wastes (혼합 폐포장 필름의 상용성 증진과 강인화)

  • Jeon Byeong-Hwan;Yoon Hogyu;Hwang Seung-Sang;Kim Jungahn;Hong Soon-Man
    • Polymer(Korea)
    • /
    • v.29 no.2
    • /
    • pp.127-134
    • /
    • 2005
  • The relationships among mechanical properties, rheological properties, and morphology by reactive extrusion based on commingled pckaging film wastes contains polypropylene (PP) pckaging film system [PP/polyethylene (PE)/aluminum (Al)/poly(ethylene terephthalate) (PET)] and Nylon packaging film system[Nylon/PE/linear-low density polyethylene (LLDPE)] were investigated to improve the compatibility and toughness of these wastes using various compatibilizers such as ethylene vinylacetate (EVA), styrene-ethylene/butylene-styrene triblock copolymer (SEBS), styrene-ethylene/butylene-styrene-graft-maleic anhydride copolymer (SEBS-g-MA), polyethylene-graft-maleic anhydride (PE-g-MA), polypropylene-graft-maleic anhydride (PP-g-MA) , polyethylene-graft-acrylic acid (PE-g-AA) and polypropylene-graft-acrylic acid (PP-g-AA). Compared with simple melt blend system, the blends showed improvement of about $50\%$ increase in physical properties when SEBS and EVA were added. However, SEBS-g-MA thermoplastic elastomer which is highly reactive with amine terminal group of nylon, resulted in about $200\%$ increase in impact strength. This compatibilization effect resulted from the increase of interfacial adhesion and the reduction of domain size of dispersed phase in PP/Nylon blend system.

A Study on Safety Improvement of Safety Devices at Entrance of Expressway Tunnels (터널 입구부 안전시설물 안전성 증대방안 연구)

  • Lee, Jeom-Ho;Kim, Jang-Wook;Kim, Deok-Soo;Lee, Soo-Beom
    • International Journal of Highway Engineering
    • /
    • v.10 no.4
    • /
    • pp.235-245
    • /
    • 2008
  • Since rapidly increase of tunnel with increasing of expressway, the study on safety improvement of safety device at entrance of expressway tunnels is necessary. The existence of tunnel occurs more speed reduction than an upward slope by itself, the collision accident of tunnel entrance causes heavier damage than that of general accident on the road. So, many kinds of safety devices such as poly-ethylene barrier, guard-rail are placed on the road side. But these devices affect the drivers as an obstacle. Although there are various safety devices that are placed at tunnel entrance, this study is related to following 2-cases. One is that the poly-ethylene barrier is placed and the other is that a safety devices is not placed. The reason that these two cases are selected, is that poly-ethylene barrier is usually placed at many tunnel entrances and safety devices can affect the drivers as an obstacle. This study is related to the difference of right-hand side clearance between inside tunnel and outside tunnel, too. The average difference observed car speed and VDS(vehicle detect system) speed nearby the tunnel is analysed. Through the statistical analysis of the average difference, this study suggests an alternatives on safety improvement of safety devices at entrance of expressway tunnels. It is concluded that the small difference of right-hand side clearance is desirable to drivers when a poly-ethylene barrier is placed. And when the difference of right-hand side clearance is large, no safety devices is desirable, and when the difference of right-hand side clearance is small, poly-ethylene barrier should be placed to improve safety.

  • PDF

Preparation and Characterization of Proton Conducting Crosslinked Membranes Using Polymer Blends (폴리머 블렌딩을 이용한 수소 전도성 가교형 막의 제조와 그 특성)

  • Kim, Jong-Hak;Lee, Do-Kyoung;Choi, Jin-Kyu;Seo, Jin-Ah;Roh, Dong-Kyu
    • Membrane Journal
    • /
    • v.17 no.4
    • /
    • pp.311-317
    • /
    • 2007
  • Proton conducting crosslinked membranes have been prepared by polymer blending, which consist of poly(vinyl alcohol-co-ethylene) (PVA-co-PE) and poly(styrene sulfonic acid-co-maleic acid) (PSSA-co-PMA) at 50 : 50 wt ratio. Two kinds of PSSA-co-PMA copolymer with 3 : 1 and 1 : 1 the molar ratio of PSSA to PMA wereused as a proton conducting source. The ethylene content of PVA-co-PE was also changed as 0, 27 and 44 mol%. The membranes were thermally crosslinked via the esterification reaction between -OH of PVA and -COOH of PMA, as demonstrated by FT-IR spectroscopy (PVA-co-PE)/(PSSA-co-PMA) membranes with 3 : 1 the molar ratio of PSSA to PMA showed higher ion exchange capacity (IEC), lower water uptake and higher proton conductivity than those with 1 : 1 molar ratio. As the PE concentration increased, the IEC values, water uptake and proton conductivities decreased continuously. These properties were elucidated in terms of competitive effect between the concentration of sulfonic acid, hydrophilicity and the crosslinked structure of membranes.

A Study on Merge Characteristics with Multi-port Hybrid Rocket (Multi-port 하이브리드 로켓의 포트 병합특성에 관한 연구)

  • Kim, Gi-Hun;Kim, Soo-Jong;Lee, Jung-Pyo;Cho, Jung-Tae;Moon, Hee-Jang;Sung, Hong-Gye;Kim, Jin-Kon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.93-96
    • /
    • 2008
  • This study was performed for merge characteristic of Hybrid Rocket with multi-port. PE(Poly Ethylene) is fuel with 4 and 5 port grain and GOX(Gas Oxygen) is oxidizer. This study according to number of ports The multi-port grain merge with other grains during a combustion, then Hybrid Rocket performance is changed by change of a combustion area.

  • PDF

A study on the Chlorine removal characteristics of Plastics in a Lab-scale Pyrolysis reactor (실험실 규모 열분해로에서의 플라스틱 탈염 특성 연구)

  • Park, Ju-Won;Park, Sang-Shin;Yang, Won;Yu, Tae-U
    • 한국연소학회:학술대회논문집
    • /
    • 2007.05a
    • /
    • pp.155-160
    • /
    • 2007
  • This study was conducted to find out the chlorine removal characteristics of waste plastic mixture by pyrolysis process with thermogravimetric analysis(TGA) and a lab-scale pyrolyzer. The material used as plastic wastes were PE (Poly-ethylene), PP (Poly-prophylene), and PVC (Poly Vinyl Chloride). Experimental procedure were composed of three steps; 1st step: TGA of PVC, PP and PE, 2nd step: chlorine removal rate of PVC in a lab-scale pyrolyzer, 3rd step: chlorine removal rate of PVC-PE and PVC-PP mixture in a pyrolyzer. Through the results of TGA, we can estimate the basic pyrolysis characteristics of each plastic, and then we can also derive the design parameters and operating conditions of the lab-scale pyrolyzer. The results can be used as primary data for designing a system to produce RPF (Refuse Plastic Fuel), a waste incinerator and a pyrolysis/gasification process.

  • PDF