• 제목/요약/키워드: Poly-generation

검색결과 221건 처리시간 0.031초

공공건물 옥상녹화와 설치태양광(PV)의 효율향상 상관관계 연구 (A Study on Correlation between Improvement in Efficiency of PV and Green roof of Public Building)

  • 이응직
    • KIEAE Journal
    • /
    • 제13권5호
    • /
    • pp.111-118
    • /
    • 2013
  • This study aims to investigate advantages of complex installation of green roof and PV system in a public building, to analyze the impact of green roof on the efficiency of PV power generation, and to consider the correlation between green roof and PV power generation. When the temperature and power generation of the modules installed in the green roof and non-green roof of the public building were measured for 3 days, the average temperature of the green roof was 23.6 degrees, and it was 36.1 degrees in the non-green roof which increased by nearly 53%. Overall, the module temperature in the green roof was lower. On the other hand, in relation to the PV generation depending on temperature reduction during the same period, the mono-crystalline module and the poly-crystalline module in the green roof showed an increase in generation at nearly 222.2W and 341.6W, and the efficiency rose by 5.5% and 6.2%, respectively, compared to the modules in the non-green roof. Therefore, it is analyzed that green roof has a positive influence on PV power generation. Finally shows the efficiency of the installed on the Green Roof PV system (complex Installation) higher than on the concrete roof PV system. Thus, the complex PV systems as well as the usual benefits of green roofs will provide greater synergies.

Poly-4-vinylphenol and Poly (melamine-co-formaldehyde)-based Tungsten Diselenide (WSe2) Doping Method

  • Nam, Hyo-Jik;Park, Hyung-Youl;Park, Jin-Hong
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
    • /
    • pp.194.1-194.1
    • /
    • 2015
  • Transition metal dichalcogenide (TMD) with layered structure, has recently been considered as promising candidate for next-generation flexible electronic and optoelectronic devices because of its superior electrical, optical, and mechanical properties.[1] Scalability of thickness down to a monolayer and van der Waals expitaxial structure without surface dangling bonds (consequently, native oxides) make TMD-based thin film transistors (TFTs) that are immune to the short channel effect (SCE) and provide very high field effect mobility (${\sim}200cm^2/V-sec$ that is comparable to the universal mobility of Si), respectively.[2] In addition, an excellent photo-detector with a wide spectral range from ultraviolet (UV) to close infrared (IR) is achievable with using $WSe_2$, since its energy bandgap varies between 1.2 eV (bulk) and 1.8 eV (monolayer), depending on layer thickness.[3] However, one of the critical issues that hinders the successful integration of $WSe_2$ electronic and optoelectronic devices is the lack of a reliable and controllable doping method. Such a component is essential for inducing a shift in the Fermi level, which subsequently enables wide modulations of its electrical and optical properties. In this work, we demonstrate n-doping method for $WSe_2$ on poly-4-vinylphenol and poly (melamine-co-formaldehyde) (PVP/PMF) insulating layer and adjust the doping level of $WSe_2$ by controlling concentration of PMF in the PVP/PMF layer. We investigated the doping of $WSe_2$ by PVP/PMF layer in terms of electronic and optoelectronic devices using Raman spectroscopy, electrical measurements, and optical measurements.

  • PDF

Comparable Electron Capture Efficiencies for Various Protonated Sites on the 3rd Generation Poly(Propylene Imine) Dendrimer Ions: Applications by SORI-CAD and Electron Capture Dissociation Mass Spectrometry (ECD MS)

  • Han, Sang-Yun;Lee, Sun-Young;Oh, Han-Bin
    • Bulletin of the Korean Chemical Society
    • /
    • 제26권5호
    • /
    • pp.740-746
    • /
    • 2005
  • In this article, we report the tandem mass spectrometry investigations for the electron capture efficiencies of the protons belonging to the different locations (generations) in a poly(propylene imine) dendrimer with three layers of a repeat unit (named as the third generation dendrimer). The employed tandem mass spectrometry methods include SORI-CAD (sustained off-resonance irradiation collisional activation dissociation) and ECD(electron capture dissociation) mass spectrometry. We obtained SORI-CAD spectra for the dendrimer ions in the different charge states, ranging from 2+ to 4+. The analysis of fragmentation sites provides the information as to where the protons are distributed among various generations of the dendrimer. Based upon this, a new strategy to study the electron capture efficiencies of the protons is utilized to examine a new type of triplycharged ions by SORI-CAD, i.e., the 3+ ions generated from the charge reduction of the native 4+ ions by ECD: (M+4H)$^{4+}\;+\;e^-\;{\rightarrow}$ (M+4H)$^{3+\bullet}$ ${\rightarrow}\;({H^{\bullet}}_{ejected}$) + (M+3H)$^{3+}\;\rightarrow$ CAD. Interestingly, comparison of these four SORICAD spectra indicates that the proton distribution in the charge-reduced 3+ ions is very close to that in the native 4+ ions. It further suggests that in this synthetic polymer ($\sim$1.7 kDa) with an artificial architecture, the electron capture efficiencies of the protons are actually insensitive to where they are located in the molecule. This is somewhat contradictory to common expectations that the protons in the inner generations may not be well exposed to the incoming electron irradiation as much as the outer ones are, thus may be less efficient for electron capture. This finding may carry some implications for the case of medium sized peptide ions with similar masses, which are known to show no obvious site-specific fragmentations in ECD MS.

ZnO-나노와이어/PVDF 복합체를 압전 활성층으로 한 나노발전기 소자 (Nanogenerator Device Based on Piezoelectric Active Layer of ZnO-Nanowires/PVDF Composite)

  • 임영택;신백균
    • 한국전기전자재료학회논문지
    • /
    • 제27권11호
    • /
    • pp.740-745
    • /
    • 2014
  • ZnO nanowires were grown by hydrothermal synthesis process and piezoelectric poly vinylidene fluoride (PVDF) was then coated on top of the ZnO-nanowires by spray-coating technique. The composite layer of ZnO-nanowires/PVDF was applied to an energy harvesting device based on piezoelectric-conversion mechanism. A defined mechanical force was given to the nanogenerator device to evaluate their electric power generation characteristics, where output current density and voltage were examined. Electric power generation property of the ZnO-nanowires/PVDF based nanogenerator device was compared to that of the nanogenerator device with ZnO-nanowires as single active layer. Effect of the ZnO-nanowires on improvement of power generation was discussed to examine its feasibility for the nanogenerator device.

고층 빌딩에 적용되는 빌딩통합형 태양광패널 효율성 개선방안 (Efficiency Improvement for Building Integrated Photovoltaic Applied to High-rise Building)

  • 이도현;안인석
    • 한국산업융합학회 논문집
    • /
    • 제25권1호
    • /
    • pp.71-78
    • /
    • 2022
  • With the advent of cutting-edge technology, renewable energy is significantly considered as alternative resources to supply electric power. However, many barriers such as energy intermittency, high initial installation cost, and low-efficiency generation challenged building new infrastructure with clean energy. Efforts reducing greenhouse gas emissions and reliance on fossil fuels resulted in the decentralization of power generation like distributed energy resource (DER). This paper is to introduce and evaluate the feasibility of building-integrated photovoltaics (BIPV) in a high-rise building in Ulsan. To optimize BIPV, a variety of methods to minimize efficiency decrease and maximize electric power generation after installing BIPV on the building's facade are suggested. The variables causing power losses are analyzed. By utilizing System Advisor Model (SAM), actual power generated from solar panels is measured by Thin-film PV, Mono-crystalline PV, and Poly-crystalline PV.

${\gamma}-Poly(glutamic\;acid)$ 생산성 균주 Bacillus licheniformis 9945a의 형질전환 미 돌연변이 유도 (Transformation and Mutation of Bacillus licheniformis 9945a Producing ${\gamma}-Poly(glutamic\;acid)$)

  • 정완석;고영환
    • Applied Biological Chemistry
    • /
    • 제40권3호
    • /
    • pp.173-177
    • /
    • 1997
  • Bacillus licheniformis 9945a는 액체배양시 ${\gamma}-poly(glutamic\;acid)$를 균체외로 분비하며, 한천배지에 고체 배양시는 점액질의 군락을 나타낸다. 점액질의 Bacillus속 세균의 형질전환은 그리 순하지 않은 것으로 알려져 있으며, B. licheniformis에서의 trasposon Tn10의 활성여부도 알려져 있지 않다. 그래서 점액질을 분비하지 않는, B. licheniformis의 자연발생적 변이주를 우선 분리하였다. Mini-Tn10을 함유한 plasmid pHV1248을 protoplast transformation법에 준해서 이 변이주에 도입하여 형질전환체를 분리하였다. pHV1248을 함유한 형질전환체를 점액성의 야생형질로 복귀시킨 후에, 가열처리함으로써 무작위 돌연변이를 유도하였다. Arginine, lysine 또는 tryptohan을 생육인자로 요구하는 돌연변이주들이 replica plating method에 의해서 분리되었고, 이 들 영양요구성 변이주는 mini-Tn10이 염색체 DNA상에 삽입됨으로써 생겨났음이 Southern blotting과 DNA-DNA 혼성화 실험으로 증명되었다. 이러한 pHV1248을 이용한 형질전환 및 돌연변이 유도방법은 Bacillus licheniformis 9945a의 다양한 변이체를 얻는데 유용할 것이다.

  • PDF

Resistive Switching in Vapor Phase Polymerized Poly (3, 4-ethylenedioxythiophene)

  • ;성명모
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.384-384
    • /
    • 2012
  • We report nonvolatile memory properties of poly (3, 4-ethylenedioxythiophene) (PEDOT) thin films grown by vapor phase polymerization using FeCl3 as an oxidant. Liquid-bridge-mediated transfer method was employed to remove FeCl3 for generation of pure PEDOT thin films. From the electrical measurement of memory device, we observed voltage induced bipolar resistive switching behavior with ON/OFF ratio of 103 and reproducibility of more than 103 dc sweeping cycles. ON and OFF states were stable up to 104 seconds without significant degradation. Cyclic voltammetry data illustrates resistive switching effect can be attributed to formation and rupture of conducting paths due to oxidation and reduction of PEDOT. The maximum current before reset process was found to be increase linearly with increase in compliance current applied during set process.

  • PDF

Preparation of Ultra Fine Poly(methyl methacrylate) Microspheres in Methanol-enriched Aqueous Medium

  • Shim, Sang-Eun;Kim, Kijung;Sejin Oh;Soonja Choe
    • Macromolecular Research
    • /
    • 제12권2호
    • /
    • pp.240-245
    • /
    • 2004
  • Monodisperse PMMA micro spheres are prepared by means of a simple soap-free emulsion polymerization in methanol-enriched aqueous medium in a single step process. The size and uniformity of the microspheres are dependent on the polymerization temperature. In a stable system, the uniformity is improved with the polymerization time. The most uniform and stable micro spheres are obtained under mild agitation speed of 100 rpm at 70$^{\circ}C$. The monodisperse PMMA microspheres in the size range of 1.4-2.0 $\mu\textrm{m}$ having less than 5% size variation are successfully achieved with varying concentrations of monomer and initiator. As the monomer and initiator concentrations increase, the larger micro spheres with enhanced uniformity are obtained. However, the decreased amount of water induces the polydisperse PMMA particles due to the generation of secondary particles.