Browse > Article
http://dx.doi.org/10.5012/bkcs.2005.26.5.740

Comparable Electron Capture Efficiencies for Various Protonated Sites on the 3rd Generation Poly(Propylene Imine) Dendrimer Ions: Applications by SORI-CAD and Electron Capture Dissociation Mass Spectrometry (ECD MS)  

Han, Sang-Yun (Division of Chemical Metrology and Material Evaluation, Korea Research Institute of Standards and Science)
Lee, Sun-Young (Department of Chemistry and Interdisciplinary Program of Integrated Biotechnology, Sogang University)
Oh, Han-Bin (Department of Chemistry and Interdisciplinary Program of Integrated Biotechnology, Sogang University)
Publication Information
Abstract
In this article, we report the tandem mass spectrometry investigations for the electron capture efficiencies of the protons belonging to the different locations (generations) in a poly(propylene imine) dendrimer with three layers of a repeat unit (named as the third generation dendrimer). The employed tandem mass spectrometry methods include SORI-CAD (sustained off-resonance irradiation collisional activation dissociation) and ECD(electron capture dissociation) mass spectrometry. We obtained SORI-CAD spectra for the dendrimer ions in the different charge states, ranging from 2+ to 4+. The analysis of fragmentation sites provides the information as to where the protons are distributed among various generations of the dendrimer. Based upon this, a new strategy to study the electron capture efficiencies of the protons is utilized to examine a new type of triplycharged ions by SORI-CAD, i.e., the 3+ ions generated from the charge reduction of the native 4+ ions by ECD: (M+4H)$^{4+}\;+\;e^-\;{\rightarrow}$ (M+4H)$^{3+\bullet}$ ${\rightarrow}\;({H^{\bullet}}_{ejected}$) + (M+3H)$^{3+}\;\rightarrow$ CAD. Interestingly, comparison of these four SORICAD spectra indicates that the proton distribution in the charge-reduced 3+ ions is very close to that in the native 4+ ions. It further suggests that in this synthetic polymer ($\sim$1.7 kDa) with an artificial architecture, the electron capture efficiencies of the protons are actually insensitive to where they are located in the molecule. This is somewhat contradictory to common expectations that the protons in the inner generations may not be well exposed to the incoming electron irradiation as much as the outer ones are, thus may be less efficient for electron capture. This finding may carry some implications for the case of medium sized peptide ions with similar masses, which are known to show no obvious site-specific fragmentations in ECD MS.
Keywords
Poly(propylene imine) dendrimer; Fourier transform mass spectrometry (FTMS); Electron capture dissociation; Sustained off-resonance irradiation collision activation dissociation (SORI-CAD); Proton distribution;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 7  (Related Records In Web of Science)
Times Cited By SCOPUS : 8
연도 인용수 순위
1 Scott, R. W. J.; Wilson, O. M.; Oh, S.-K.; Kenik, E. A.; Crooks, R. M. J. Am. Chem. Soc. 2004, 126, 15583   DOI   ScienceOn
2 Suk, J.; Lee, J.; Kwak, J. Bull. Korean Chem. Soc. 2004, 25, 1681   DOI   ScienceOn
3 Marshall, A. G.; Wang, T. C. L.; Ricca, T. L. J. Am. Chem. Soc. 1985, 107, 7893   DOI
4 Neubert, H.; Knights, K. A.; de Miguel, Y. R.; Cowan, D. A. Macromolecules 2003, 36, 8297   DOI   ScienceOn
5 Fenn, J. B.; Mann, M.; Meng, C. K.; Wong, S. F.; Whitehouse, C. M. Science 1989, 246, 64   DOI
6 Tanaka, K.; Waki, H.; Ido, Y.; Akita, S.; Yoshida, Y.; Yoshida, T. Rapid Commun. Mass Spectrom. 1988, 2, 151   DOI
7 Tang, X.-J.; Thibault, P.; Boyd, R. K. Anal. Chem. 1993, 65, 2824   DOI   ScienceOn
8 Jones, J. L.; Dongre, A. R.; Somogyi, A.; Wysocki, V. H. J. Am. Chem. Soc. 1996, 116, 8368   DOI   ScienceOn
9 Koster, S.; Duursma, M. C.; Boon, J. J.; Heeren, M. A.; Ingemann, S.; van Benthem, R. A. T. M.; de Koster, C. G. J. Am. Soc. Mass Spectrom. 2003, 14, 332   DOI   ScienceOn
10 Zubarev, R. A.; Horn, D. M.; Fridriksson, E. K.; Kelleher, N. L.; Kruger, N. A.; Lewis, M. A.; Carpenter, B. K.; McLafferty, F. W. Anal. Chem. 2000, 72, 563   DOI   ScienceOn
11 Oh, H. B.; Brueker, K.; Sze, S. K.; Ge, Y.; Carpenter, B. K.; McLafferty, F. W. Proc. Natl. Acad. Sci. USA 2002, 99, 15863   DOI   ScienceOn
12 Yu, S.; Lee, S.; Chung, G.; Oh, H. B. Bull. Korean Chem. Soc. 2004, 25, 1477   DOI   ScienceOn
13 Lee, S.; Han, S. Y.; Lee, T. G.; Lee, D.; Chung, G.; Oh, H. B. submitted to J. Am. Soc. Mass Spectrom. (2005)
14 McLuckey, S. A.; Asano, K. G.; Schaaff, G.; Stephenson J. L. Jr. Int. J. Mass Spectrom. 2000, 195/196, 419   DOI   ScienceOn
15 Breuker, K.; Oh, H. B.; Lin, C.; Carpenter, B. K.; McLafferty, F. W. Proc. Natl. Acad. Sci. USA 2004, 101, 13971   DOI   ScienceOn
16 Boas, U.; Heegaard, P. M. H. Chem. Soc. Rev. 2004, 33, 43   DOI   ScienceOn
17 Haknsson, K.; Chalmers, M. J.; Quinn, J. P.; McFarland, M. A.; Hendrickson, C. L.; Marshall, A. G. Anal. Chem. 2003, 75, 3256   DOI   ScienceOn
18 Gauthier, J. W.; Trautman, T. R.; Jacobson, D. B. Anal. Chim. Acta 1991, 246, 211   DOI   ScienceOn
19 NIST Chemistry Webbook: http://webbook.nist.gov/chemistry/
20 Breuker, K.; Oh, H. B.; Cerda, B. A.; Horn, D. M.; McLafferty, F. W. Eur. J. Mass Spectrom. 2002, 8, 277