• 제목/요약/키워드: Poly-IC

검색결과 121건 처리시간 0.021초

플랫 판넬표시장치용 DC-DC 컨버터 집적회로의 설계 (A Integrated Circuit Design of DC-DC Converter for Flat Panel Display)

  • 이준성
    • 전자공학회논문지
    • /
    • 제50권10호
    • /
    • pp.231-238
    • /
    • 2013
  • 본 논문은 플랫판넬 디스플레이 장치에 사용할 DC-DC 변환기의 설계에 관한 것이다. 6~14[V]의 단일 DC 전원전압으로부터 플랫 판넬 백바이어스용 -5[V] DC 전압 발생회로(Negative DC Voltage Generator)와 승압된 15[V], 23[V] DC 전압 발생회로, 그리고 강압된 3.3[V] DC를 얻기 위한 회로를 설계하였다. 또한 기준 전압원으로 사용하기 위한 밴드갭 회로와 발진기, 레벨변환기 회로, 고온보호 회로 등을 설계하였다. 제작공정은 부(-)전압으로 동작하는 회로와 기타 회로를 분리하기 위해서 트리플-웰(Triple-Well)구조가 적용된 공정 내압 30[V], 최소선폭 0.35[${\mu}m$], 2P_2M CMOS 공정을 사용하였다. 설계된 모든 회로는 시뮬레이션으로 검증하여 동작을 확인하였으며 원 칩으로 제작하여 플랫판넬 디스플레이 장치에 응용할 수 있도록 기능을 확보하였다.

Study on the Antileukemic Effect of Galla Rhois

  • Kim, Myung-Wan;Ju, Sung-Min;Kim, Kun-Jung;Yun, Yong-Gab;Han, Dong-Min;Kim, Won-Sin;Jeon, Byung-Hun
    • 동의생리병리학회지
    • /
    • 제19권1호
    • /
    • pp.234-241
    • /
    • 2005
  • Galla Rhois is a nest of parasitic bug, Mellaphis chinensis Bell, in Rhus chinensis Mill. Galla Rhois has been used for the therapy of diarrhea, peptic ulcer, hemauria, etc., that showed various antiinflammatory activity, and other biological properties. We studied the effect of Galla Rhois water extract(GRWE). The cytotoxic activity of GRWE in HL-60 cells was increased in a concentration-dependent manner. GRWE was cytotoxic to HL-60 cells, with $IC_50$ of $100{\mu}g/m{\ell}$. Treatment of GRWE to HL-60 cells showed the fragmentation of DNA in a concentration manner, suggesting that these cells underwent apoptosis. In addition, the flow cytometric analysis revealed GRWE concentration-dependently increased apoptotic cells with hypodiploid DNA content and arrested G1 phase of cell cycle. These results indicate that GRWE may have a possibility of potential anticancer activities. Treatment of HL-60 cells with GRWE was induced activation of caspase-3, caspase-8 and proteolytic cleavage of poly(ADP-ribose) polymerase. Also, caspase-3 was directly activated via caspase-8 activation. GRWE also caused the release of cytochrome c from mitochondria into the cytosol. GRWE-induced cytochrome c release was mediated by caspase-8-dependent cleavage of Bid and Bax translocation. These results suggest that caspase-8 mediates caspase-3 activation and cytochrome c release during GRWE-induced apoptosis in HL-60 cells.

Ochnaflavone, a Natural Biflavonoid, Induces Cell Cycle Arrest and Apoptosis in HCT-15 Human Colon Cancer Cells

  • Kang, You-Jin;Min, Hye-Young;Hong, Ji-Young;Kim, Yeong-Shik;Kang, Sam-Sik;Lee, Sang-Kook
    • Biomolecules & Therapeutics
    • /
    • 제17권3호
    • /
    • pp.282-287
    • /
    • 2009
  • Ochnaflavone is a natural biflavonoid and mainly found in the caulis of Lonicera japonica (Caprifoliaceae). Biological activities such as anti-inflammatory and anti-atherogenic effects have been previously reported. The anticancer activity of ochnaflavone, however, has been poorly elucidated yet. In the present study, we investigated the effect of ochnaflavone on the growth inhibitory activity in cultured human colon cancer cell line HCT-15. Ochnaflavone inhibited the proliferation of the cancer cells with an $IC_{50}$ value of $4.1{\mu}M$. Flow cytometric analysis showed that ochnaflavone arrested cell cycle progression in the G2/M phase, and induced the increase of sub-G1 peak in a concentration-dependent manner. Induction of cell cycle arrest was correlated with the modulation of the expression of cell cycle regulating proteins including cdc2 (Tyr15), cyclin A, cyclin B1 and cyclin E. The increase of sub-G1 peak by the higher concentrations of ochnaflavone (over $20{\mu}M$) was closely related to the induction of apoptosis, which was evidenced by the induction of DNA fragmentation, activation of caspase-3, -8 and -9, and cleavage of poly-(ADP-ribose) polymerase. These findings suggest that the cell cycle arrest and induction of apoptosis might be one possible mechanism of actions for the anti-proliferative activity of ochnaflavone in human colon cancer cells.

Induction of Apoptosis in the HepG2 Cells by HY53, a Novel Natural Compound Isolated from Bauhinia forficata

  • Lim Hae-Young;Lim Yoong-Ho;Cho Youl-Hee;Lee Chul-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권8호
    • /
    • pp.1262-1268
    • /
    • 2006
  • In the search for a novel cytotoxic substance from medicinal plants, HY53 ($C_{17}H_{32}O_2N_2$; molecular weight 296) was isolated from the leaves of Pata de Vaca (Bauhinia forficata). The growth of the HepG2 cells was inhibited in a dose-dependent manner when treated with 0.07 to 0.40 mM HY53 for 24 h (IC$_{50}$: 0.13 mM). Furthermore, nuclear DAPI staining revealed the typical nuclear features of apoptosis in the HepG2 cells exposed to 0.27 mM HY53, whereas a flow cytometric analysis of the HepG2 cells using propidium iodide showed that the apoptotic cell population increased gradually from 8% at 0 mM to 23% at 0.14 mM and 45% at 0.40 mM after being exposed to each concentration of HY53 for 24 h. Moreover, a TUNEL assay also exhibited the apoptotic induction of the HepG2 cells treated with HY53. To obtain further information on the HY53-induced apoptosis, the expression level of certain apoptosis-associated proteins was examined using a Western blot analysis. Treatment of the HepG2 cells with HY53 resulted in the activation of caspase-3, and subsequent proteolytic cleavage of poly(ADP-ribose) polymerase (PARP). Consequently, the results confirmed that the apoptosis in the HepG2 cells was induced by HY53 and the involvement of caspase-3-mediated PARP cleavage in the apoptotic process.

Synthesis, Characterization and in vitro Anti-Tumoral Evaluation of Erlotinib-PCEC Nanoparticles

  • Barghi, Leila;Asgari, Davoud;Barar, Jaleh;Nakhlband, Aylar;Valizadeh, Hadi
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권23호
    • /
    • pp.10281-10287
    • /
    • 2015
  • Background: Development of a nanosized polymeric delivery system for erlotinib was the main objective of this research. Materials and Methods: Poly caprolactone-polyethylene glycol-polycaprolactone (PCEC) copolymers with different compositions were synthesized via ring opening polymerization. Formation of triblock copolymers was confirmed by HNMR as well as FT-IR. Erlotinib loaded nanoparticles were prepared by means of synthesized copolymers with solvent displacement method. Results: Physicochemical properties of obtained polymeric nanoparticles were dependent on composition of used copolymers. Size of particles was decreased with decreasing the PCL/PEG molar ratio in used copolymers. Encapsulation efficiency of prepared formulations was declined by decreasing their particle size. Drug release behavior from the prepared nanoparticles exhibited a sustained pattern without a burst release. From the release profiles, it can be found that erlotinib release rate from polymeric nanoparticles is decreased by increase of CL/PEG molar ratio of prepared block copolymers. Based on MTT assay results, cell growth inhibition of erlotinib has a dose and time dependent pattern. After 72 hours of exposure, the 50% inhibitory concentration (IC50) of erlotinib hydrochloride was appeared to be $14.8{\mu}M$. Conclusions: From the obtained results, it can be concluded that the prepared PCEC nanoparticles in this study might have the potential to be considered as delivery system for erlotinib.

Anti-cancer Activity of Anthricin through Caspase-dependent Apoptosis in Human Hypopharyngeal Squamous Carcinoma Cell

  • Kim, Won Gi;Lee, Seul Ah;Moon, Sung Min;Kim, Jin-Soo;Kim, Su-Gwan;Shin, Yong Kook;Kim, Do Kyung;Kim, Chun Sung
    • International Journal of Oral Biology
    • /
    • 제41권4호
    • /
    • pp.183-190
    • /
    • 2016
  • Anthricin (Deoxypodophyllotoxin), a naturally occurring flavolignan, has well known anti-cancer properties in several cancer cells, such as prostate cancer, cervical carcinoma and pancreatic cancer. However, the effects of Anthricin are currently unknown in oral cancer. We examined the anticancer effect and mechanism of action of Anthricin in human FaDu hypopharyngeal squamous carcinoma cells. Our data showed that Anthricin inhibits cell viability in a dose- and time-dependent manner ($IC_{50}$ 50 nM) in the MTT assay and Live & Dead assay. In addition, Anthricin treated FaDu cells showed marked apoptosis by DAPI stain and FACS. Furthermore, Anthricin activates anti-apoptotic factors such as caspase-3, -9 and poly (ADP-ribose) polymerase (PARP), suggesting that caspase-mediated pathways are involved in Anthricin- induced apoptosis. Anthricin treatment also leads to accumulation of the pro-apoptotic factor Bax, followed by inhibition of cell growth. Taken together, these results indicate that Anthricn-induced cell death of human FaDu hypopharyngeal squamous carcinoma cells is mediated by mitochondrial-dependent apoptotic pathway. In summary, our findings provide a framework for further exploration on Anthricin as a novel chemotherapeutic drug for human oral cancer.

반지련의 Methyl chloride 분획이 U937 단핵 세포 암주의 세포고사에 미치는 영향 (Apoptotic effect of Me fraction of Scutellaria barbata in human leukemic U937 cells)

  • 차윤이;이은옥;이주령;강인철;박영두;안규석;김성훈
    • 동의생리병리학회지
    • /
    • 제17권3호
    • /
    • pp.629-632
    • /
    • 2003
  • Scutellaria barbata has been used as a traditional Chinese Herb for treating liver, lung and rectal tumors. In the present study, cytotoxic effect of Scutellaria barbata MC fradtion was investigated and it was found to inhibit proliferation of human leukemic U937 cells with an IC50 of approximately 10 μg/ml in a dose-dependent manner. We also demonstrated that Scutellaria barbata MC fraction caused apoptosis in U937 cells. In the flow cytometric assay, the MC fraction-treated U937 cells showed an increase in hypo-diplold Sub G1 DNA contents. DNA fragmentation was observed by TUNEL assay. An increase of Bax:Bcl-2 ratio, activation of caspase-9, caspase-3, and cleavage of poly (ADP-ribose) polymerase (PARP) were demonstrated by western blot analysis. Taken together, these results exerted that the MC fraction suppressed human leukemic U937 cell proliferation by inducing apoptosis via the mitochondrial pathway.

A Benzylideneacetophenone Derivative Induces Apoptosis of Radiation-Resistant Human Breast Cancer Cells via Oxidative Stress

  • Park, Jeong Eon;Piao, Mei Jing;Kang, Kyoung Ah;Shilnikova, Kristina;Hyun, Yu Jae;Oh, Sei Kwan;Jeong, Yong Joo;Chae, Sungwook;Hyun, Jin Won
    • Biomolecules & Therapeutics
    • /
    • 제25권4호
    • /
    • pp.404-410
    • /
    • 2017
  • Benzylideneacetophenone derivative (1E)-1-(4-hydroxy-3-methoxyphenyl) hept-1-en-3-one (JC3) elicited cytotoxic effects on MDA-MB 231 human breast cancer cells-radiation resistant cells (MDA-MB 231-RR), in a dose-dependent manner, with an $IC_{50}$ value of $6{\mu}M$ JC3. JC3-mediated apoptosis was confirmed by increase in sub-G1 cell population. JC3 disrupted the mitochondrial membrane potential, and reduced expression of anti-apoptotic B cell lymphoma-2 protein, whereas it increased expression of pro-apoptotic Bcl-2-associated X protein, leading to the cleavage of caspase-9, caspase-3 and poly (ADP-ribose) polymerase. In addition, JC3 activated mitogen-activated protein kinases, and specific inhibitors of these kinases abrogated the JC3-induced increase in apoptotic bodies. JC3 increased the level of intracellular reactive oxygen species and enhanced oxidative macromolecular damage via lipid peroxidation, protein carbonylation, and DNA strand breakage. Considering these findings, JC3 is an effective therapy against radiation-resistant human breast cancer cells.

Induction of Apoptosis by Tosyl-JM3 in HL-60 cells

  • Kim Kun-Jung;Ju Sung-Min;Lee Chai-Ho;Kim Won-Sin;Yun Yong-Gab;Jeong Han-Sol;Kim Sung-Hoon;Park Sung-Joo;Jeon Byung-Hun
    • 동의생리병리학회지
    • /
    • 제19권5호
    • /
    • pp.1370-1374
    • /
    • 2005
  • The Tosyl-JM3 (TJM3) is a modified compound from one of 1,2,3,4-Tetra- hydroisoquinoline (THIQ) derivatives. The THIQs include potent cytotoxic agents that display a range of anti-tumor activities, antimicrobial activity, and other biological properties. In this study, we investigated the effect of TJM3 on the cytotoxicity, induction of apoptosis in human promyelocytic leukemia cells (HL-60 cells). TJM3 showed a significant cytotoxic activity in HL-60 cells (IC50 = approximately $60{\mu}g/m{\ell}$) after a 24 hr incubation. Treatment of HL-60 cells with TJM3 exhibited several features of apoptosis, including formation of DNA ladders in agarose gel electrophoresis, morphological changes of HL-60 cells with DAPI stain. Here we observed that TJM3 caused a decrease of procaspase-3 protein. Further molecular analysis demonstrated that TJM3 led to cleavage of poly(ADP-ribose) polymerase (PARP) by western blot and increase of hypodiploid (Sub-G1) population in the flow cytometric analysis. In conclusion, these above results indicate that TJM3 dramatically suppresses HL-60 cell growth and induces apoptosis. These data may support a possibility for the use of TJM3 in the prevention and treatment of leukemia.

CDST, a Derivative of Tetrahydroisoquinoline, Induced Apoptosis in HL-60 Cells through Activation of Caspase-8, Bid Cleavage and Cytochrome c Release

  • Ju, Sung-Min;Kim, Kun-Jung;Lee, Jong-Gil;Lee, Chai-Ho;Han, Dong-Min;Yun, Young-Gab;Hong, Gi-Yun;An, Won-Gun;Jeon, Byung-Hun
    • 동의생리병리학회지
    • /
    • 제19권3호
    • /
    • pp.802-810
    • /
    • 2005
  • The tetrahydroisoquinolines included potent cytotoxic agents that showed antitumor activity,antimicrobial activity, and other biological properties. We studied the effect of CDST, 1-Chloromethyl-6,7-dimethoxy-3,4-dihydro-1H-isoquinoline-2-sulfonic acid amide, a newly synthesized anti-cancer agent. The cytotoxic activity of CDST in HL-60 cells was increased in a dose-dependent manner. CDST, tetrahydroisoquinolines derivative, was cytotoxic to HL-60 cells, with IC50 of $80{\mu}g/ml$. Treatment of CDST to HL-60 cells showed the fragmentation of DNA in a dose- and time dependent manner, suggesting that thesecells underwent apoptosis. Treatment of HL-60 cells with CDST was induced in a dose- and time-dependent activation of caspase-3, caspase-8 and proteolytic cleavage of poly(ADP-ribose) polymerase. In caspase activity assay, caspase-3 and -8 was activated after 12 h and 6 h posttreatment, respectively. CDST also caused the release of cytochrome c from mitochondria into the cytosol. CDST-induced cytochrome c release was mediated by caspase-8-dependent cleavage of Bid and Bax translocation. These results suggest that caspase-8 induced Bid cleavage and Bax translocation, caused mitochondrial cytochrome c release, and induce caspase-3 activationduring CDST-induced apoptosis in HL-60 cells.