• Title/Summary/Keyword: Poly propylene

Search Result 160, Processing Time 0.021 seconds

Novel Composite Membranes Comprising Silver Salts Physically Dispersed in Poly(ethylene-co-propylene) for the Separation of Propylene/Propane

  • Kim, Jong-Hak;Min, Byoung-Ryul;Kim, Yong-Woo;Kang, Sang-Wook;Won, Jong-Ok;Kang, Yong-Soo
    • Macromolecular Research
    • /
    • v.15 no.4
    • /
    • pp.343-347
    • /
    • 2007
  • Novel composite membranes, which delivered high separation performance for propylene/propane mixtures, were developed by coating inert poly(ethylene-co-propylene) rubber (EPR) onto a porous polyester substrate, followed by the physical distribution of $AgBF_4$. Scanning electron microscopy-wavelength dispersive spectrometer (SEM-WDS) revealed that silver salts were uniformly distributed in the EPR layer. The physical dispersion of the silver salts in the inert polymer matrix, without specific interaction, was characterized by FT-IR and FT-Raman spectroscopy. The high separation performance was presumed to stem from the in-situ dissolution of crystalline silver ionic aggregates into free silver ions, which acted as an active propylene carrier within a propylene environment, leading to facilitated propylene transport through the membranes. The membranes were functional at all silver loading levels, exhibiting an unusually low threshold carrier concentration (less than 0.06 of silver weight fraction). The separation properties of these membranes, i.e. the mixed gas selectivity of propylene/propane ${\sim}55$ and mixed gas permeance ${\sim}7$ GPU, were stable for several days.

Effect of Poly(propylene-co-octene) as a Compatibilizer on Mechanical Properties and Weldline Characteristics of Polypropylene/Poly(ethylene-co-octene) Blends (폴리프로필렌/에틸렌-옥텐 공중합체 블렌드의 기계적 성질 및 웰드라인 물성에 미치는 폴리프로필렌-옥텐 공중합체의 영향에 관한 연구)

  • Koo, Hyo-Seon;Son, Young-Gon
    • Elastomers and Composites
    • /
    • v.46 no.3
    • /
    • pp.251-256
    • /
    • 2011
  • Effect of poly(propylene-co-octene) as a compatibilizer in toughened polypropylene/ poly(ethylene-co-octene) (EOC) was investigated. The EOCs used were metallocene catalyzed commercial linear low density polyethylene and they are elastomeric materials. The poly(propylene-co-octene) was synthesized by metallocene catalyst in our laboratory to be used as a compatibilizer in PP/EOC blends. PP/EOC blends without compatibilizer shows very low mechanical properties in specimens with weldlines while incorporation of a compatibilizer significantly increases the mechanical properties of specimens with weldlines. However, compatibilized PP/EOC blends does not show increased impact property in a weldline free specimen and it is attributed to low molecular weight of the poly(propylene-co-octene) synthesized in present study. It is expected that the poly(propylene-co-octene) having increased molecular weight provides very good performance as an effective compatibilizer in toughened polypropylene/EOC blends.

Synthesis and Characterization of Waterborne Polyurethane for Water Resistance (내수성 향상을 위한 수성 폴리우레탄의 합성 및 특성)

  • Choi, Min Ji;Jeong, Boo Young;Cheon, Jung Mi;Park, Kuenbyeol;Chun, Jae Hwan
    • Journal of Adhesion and Interface
    • /
    • v.18 no.1
    • /
    • pp.8-12
    • /
    • 2017
  • In this study, waterborne polyurethane was synthesized with polyester polyol, poly(propylene carbonate) (PPC), 4,4-dicyclohexylmethane diisocyanate ($H_{12}MDI$) and dimethylol propionic acid (DMPA) to improve the water resistance. The properties of the synthesized waterborne polyurethane using poly(propylene carbonate) (WPUP) was evaluated through FT-IR, GPC, DSC and UTM. The mechanical properties were increased with the increase in the amount of PPC. When the ratio of polyester polyol to poly(propylene carbonate) is 9:1, the highest water resistance was showed.

Synthesis of Low Molecular-weight Poly (Propylene Carbonate)-Poly (Ethylene Glycol) Block Copolymers through $CO_2$/Propylene Oxide Copolymerization (이산화탄소/프로필렌 옥사이드 공중합을 통한 저분자량 폴리(프로필렌 카보네이트)-폴리(에틸렌 글리콜) 블록 공중합체의 합성)

  • Lee, Sang-Hwan;Cyriac, Anish;Jeon, Jong-Yeob;Lee, Bun-Yeoul
    • Clean Technology
    • /
    • v.17 no.3
    • /
    • pp.244-249
    • /
    • 2011
  • We synthesized low molecular-weight polymers bearing hydrophobic and hydrophilic parts in a chain through $CO_2$/propylene oxide copolymerization. When hydrophilic poly (ethylene glycol) bearing -OH group (s) at the end group (s) was added as a chain transfer agent in the $CO_2$/propylene oxide copolymerization catalyzed by a highly active catalyst, block polymers were formed. If poly (ethylene glycol) (PEG) bearing -OH group only at an end was fed, PEG-block-PPC diblock copolymer was obtained. When PEG bearing -OH group at both ends was fed, PPC-block-PEG-block-PPC triblock copolymer was obtained. We confirmed formation of block copolymers by $^1H$-NMR spectroscopy and GPC studies.

Dimensional Stability of Poly(ethylene/propylene naphthalate) as a Flexible Substrate Application (유연 기판 소재로 응용을 위한 폴리(에틸렌/프로필렌 나프탈레이트)의 치수안정성 연구)

  • Kim, Jae-Hyun;Heo, Hye-Young;Jung, Tae-Houng;Han, Joon-Hee;Kang, Ho-Jong
    • Polymer(Korea)
    • /
    • v.33 no.4
    • /
    • pp.371-376
    • /
    • 2009
  • The 1,3-propane diol has been introduced as a co-monomer with ethylene glycol to polymerize the poly(ethylene/propylene naphthalate) in order to improve the dimensional stability of poly(ethylene naphthalate) for a possible flexible substrate material. Based on $^1H$-NMR results, it was found that poly (ethylene/propylene naphthalate) has been synthesised successfully. Introducing 1,3-propane diol resulted in the amorphous state in polyester as well as lowering of glass transition and thermal degradation temperature. Coexisting relatively longer propylene segment compared with ethylene in synthesized polyester caused less orientation behavior and reducing thermal expansion coefficient. This is a promising result for poly (ethylene/propylene naphthalate) to apply a flexible substrate.

Structural Effects on the Tensile and Morphological Properties of Zeolite-filled Polypropylene Derivative Composites

  • Jagannath, Jagannath Biswas;Kim, Hyun;Yim, Chai-Suk;Cho, Jungh-Wan;Kim, Geon-Joong;Choe, Soon-Ja;Lee, Dai-Soo
    • Macromolecular Research
    • /
    • v.12 no.5
    • /
    • pp.443-450
    • /
    • 2004
  • We have studied the effects that inorganic zeolite powder have on structurally different copolymer [poly(propylene-co-ethylene)] and terpolymer [poly(propylene-co-ethylene-co-l-butene)] systems and the possibility of preparing suitable porous composite films. The impact strength and yield stress of the composites did not improve upon any further loading of zeolite, but the modulus increased gradually with respect to the filler loading. The experimental modulus of each of the two systems was compared with theoretical models. We performed a morphological study of the filler mixing efficiency and image analysis. The number-, weight-, and z-average air hole diameters were compared with respect to the draw ratio as well as the zeolite loading. The experimental results suggest that these two matrices can provide a new choice for preparing future multiphase polymeric porous films by stretching them unidirectionally. In particular, we suggest that a 40 wt% zeolite loading at a draw ratio of 4 is useful for porous film applications.

Poly(1,2-propylene glycol adipate) as an Environmentally Friendly Plasticizer for Poly(vinyl chloride) (폴리염화비닐의 친환경 가소제로서 Poly(1,2-propylene glycol adipate))

  • Zhao, Yan;Liang, Hongyu;Wu, Dandan;Bian, Junjia;Hao, Yanping;Zhang, Guibao;Liu, Sanrong;Zhang, Huiliang;Dong, Lisong
    • Polymer(Korea)
    • /
    • v.39 no.2
    • /
    • pp.247-255
    • /
    • 2015
  • Poly(1,2-propylene glycol adipate) (PPA) was used as an environmentally friendly plasticizer in flexible poly(vinyl chloride) (PVC). Thermal, mechanical, and rheological properties of the PVC/PPA blends were characterized by differential scanning calorimetry, dynamic mechanical analysis, tensile test, scanning electron microscopy and small amplitude oscillatory shear rheometry. The results showed that PPA lowered the glass transition temperature of PVC. The introduction of PPA could decrease tensile strength and Young's modulus of the PVC/PPA blends; however, elongation-at-break was dramatically increased due to the plastic deformation. The plasticization effect of PPA was also manifested by the decrease of dynamic storage modulus and viscosity in the melt state of the blends. The results indicated that PPA had a good plasticizing effect on PVC.

Gas Permeation Properties of $CO_2$ Through Poly(ethylene Glycol) Diacrylate/Poly(Propylene Glycol) Diacrylate Membrane (Poly(ethylene glycol)diacrylate/poly(propylene glycol)diacrylate 막의 이산화탄소 기체 투과특성에 관한 연구)

  • Rhim Ji Won;Nam Sang Yong;Lee Sun Yong;Yun Tae Il
    • Membrane Journal
    • /
    • v.14 no.3
    • /
    • pp.250-257
    • /
    • 2004
  • PEG(poly(ethylene glycol)) acrylate/PPG(poly(propylene glycol)) acrylate (PEG/PPG) was prepared using UV induced photopolymerization method to investigate gas permeation properties of the membrane. The effect of PPG content on the solubility, diffusivity, and permeability of $CO_2$, $O_2$, and $N_2$ in PEG/PPG membrane is reported at $25^{\circ}C$ and $35^{\circ}C$. PEG/PPG (9:1) membrane exhibits $CO_2$ permeability coefficient of 28.9 barrer and $CO_2$/$N_2$ pure gas selectivity of 57.9 at $25^{\circ}C$. Permeability coefficient of increased with increasing with PPG content in the membrane. PEG/PPG (5:5) membrane shows $CO_2$ permeability coefficient of 78.9 barrer and $CO_2$/$N_2$ pure gas selectivity of 33.2 at $25^{\circ}C$.

Synthesis and Adhesion Properties of Waterborne Polyurethane Adhesives for Footwear according to Polyol Blending

  • Choi, Min Ji;Jeong, Boo Young;Cheon, Jung Mi;Chun, Jae Hwan
    • Elastomers and Composites
    • /
    • v.52 no.1
    • /
    • pp.81-85
    • /
    • 2017
  • In order to improve the water resistance, we synthesized waterborne polyurethane by using polyester polyol, poly(propylene carbonate) (PPC), 4,4'-dicyclohexylmethane diisocyanate ($H_{12}MDI$), and dimethylolpropionic acid (DMPA). The properties of the synthesized waterborne polyurethane using poly(propylene carbonate) (WPUP) were evaluated by FT-IR, $^1H-NMR$, GPC, DSC, TGA, and UTM. The mechanical properties increased while the adhesion properties decreased with the increase in the amount of PPC. The highest water resistance was shown when the ratio of polyester polyol to PPC was 9:1.