• Title/Summary/Keyword: Poly Ethylene Terephthalate

Search Result 240, Processing Time 0.023 seconds

Thermomechanical Properties and Shape Memory Effect of PET-PEG Copolymers Cross-linked with Pentaerythritol

  • Shim, Yong-Shik;Chun, Byoung-Chul;Chung, Yong-Chan
    • Fibers and Polymers
    • /
    • v.7 no.4
    • /
    • pp.328-332
    • /
    • 2006
  • Poly(ethylene terephthalate) (PET) and poly(ethylene glycol) (PEG) copolymers cross-linked with pentaerythritol, a four-way cross-linker, are prepared to compare their mechanical and shape memory properties with the one cross-linked by glycerol. Composition of PEG and pentaerythritol is varied to search for the one with the best mechanical and shape memory properties. The highest shape recovery rate is observed for the copolymer composed of 30 mol% PEG-200 and 2.5 mol% pentaerythritol. Four-way cross-linking by pentaerythritol significantly improves shape recovery rate and retention of high shape recovery rate after repeated use compared to the one cross-linked by glycerol, a three-way cross-linker, and difference and advantage of additional cross-linking point are discussed.

Effect of Greenhouse Environment Covered with CEM BIO Film on Green Pepper(Capsicum annuum L.) Growth (CEM BIO Film 피복시설의 환경특성이 풋고추 생육에 미치는 영향)

  • Jeon, Hee;Kwon, Young-Sam;Kim, Hyun-Hwan;Lee, Si-Young
    • Proceedings of the Korean Society for Bio-Environment Control Conference
    • /
    • 1998.10a
    • /
    • pp.99-102
    • /
    • 1998
  • 우리나라 윈예생산 시설의 피복에 사용되는 피복자재는 값이 싸고 설치가 쉬우며 비교적 광투과율이 높고 시설에 피복할 경우 긴밀도가 뛰어나 보온력이 우수한 플라스틱 필름이 99 % 이상을 차지하고 있다. 최근에 플라스틱 필름의 종류는 다양하게 발전하여 소재는 PE(polyethylene), EVA(ethylene vinylacetate), PVC(polyvinylchloride), 등의 연질필름과 PET(poly ethylene terephthalate) 그리고 ETFE(ethylene tetrafluoride ethylene) 등의 반경질핌름으로 되어 있다. (중략)

  • PDF

Quantitative Extraction Analysis of Brominated Flame Retardant Substances Using Supercritical-Fluid Method for Environmental Assessment (초임계추출법을 이용한 브롬계 난연제 화합물 환경성 평가 추출효율 분석 연구)

  • Oh, Min-Kyung;Yoon, Sang-Hwa;Lee, Young-Kwan;Han, Jae-Sung;Won, Sung-Ho;Nam, Jae-Do
    • Polymer(Korea)
    • /
    • v.32 no.1
    • /
    • pp.13-18
    • /
    • 2008
  • For the evaluation of brominated flame retardants included in polymeric electronic devices, we investigated the extraction methods and solvent systems for four different types of polymers of PC (polycarbonate), PP (polyropylene), PET (poly(ethylene terephthalate)) and PBT (poly(butylene terephthalate)) using different solvent systems of hexane/acetone, THF, toluene, and THF/toluene. In order to compare the extraction efficiency of different methods and solvent systems, the deca-BDE (decabromo diphenyl ether) flame retardant was included in PC, PP, PET and PBT systems and subsequently extracted by soxhlet, ultrasonic, accelerated solvent, microwave and supercritical fluid extraction methods. The amount of the extracted flame retardant was monitored to evaluate the extraction efficiency. The ultrasonic extraction method was found not to be acceptable as an extraction method for the polymer systems mainly due to a low salvation efficiency of the organic solvents. Soxhlet, accelerated solvent and microwave extraction methods exhibited over 80% of extraction efficiency for toluene. The supercritical fluid extraction method, which has been used as an extraction method for flame retardants in polymers, showed the extraction efficiencies of ca. 100% for PC and PP in the optimal extraction conditions of $60^{\circ}C$ and 120 bar.

Indium Tin Oxide-Free Large-Area Flexible Organic Light-Emitting Diodes Utilizing Highly Conductive poly(3,4-ethylene dioxythiophene):poly(styrene sulfonate) Anode Fabricated by the Knife Coating Method (나이프 코팅 법으로 제작한 ITO-Free 고전도성 PEDOT:PSS 양극 대면적 유연 OLED 소자 제작에 관한 연구)

  • Seok, JaeYoung;Lee, Jaehak;Yang, MinYang
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.1
    • /
    • pp.49-55
    • /
    • 2015
  • This paper reports solution-processed, high-efficiency organic light-emitting diodes (OLEDs) fabricated by a knife coating method under ambient air conditions. In addition, indium tin oxide (ITO), traditionally used as the anode, was substituted by optimizing the conductivity enhancement treatment of poly(3,4-ethylene dioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) films on a polyethylene terephthalate (PET) substrate. The transmittance and sheet resistance of the optimized PEDOT:PSS anode were 83.4% and $27.8{\Omega}/sq$., respectively. The root mean square surface roughness of the PEDOT:PSS anode, measured by atomic force microscopy, was only 2.95 nm. The optimized OLED device showed a maximum current efficiency and maximum luminous density of 5.44 cd/A and $8,356cd/m^2$, respectively. As a result, the OLEDs created using the PEDOT:PSS anode possessed highly comparable characteristics to those created using ITO anodes.

Processability Enhancement in Melt Processing of Poly(ethylene naphthalate) (폴리(에틸렌 나프탈레이트)의 가공 특성 향상 연구)

  • Kim Hyogap;Kang Ho-Jong
    • Polymer(Korea)
    • /
    • v.29 no.5
    • /
    • pp.475-480
    • /
    • 2005
  • The lowering of melt viscosity has been investigated to achieve the processability enhancement in poly(ethylene naphthalate) (PEN) melt processing by the reactive melt blending with poly(ethylene terephthalate) (PET) and introducing lubricant as well. CaST lubricant resulted in the lowering of PEN melt viscosity but noticeable mechanical property drop was found in PEN with more than $2wt\%$ of lubricant due to the acceleration of thermal degradation by excess lubricant. PEN/PET (90/10) blend has less melt viscosity than PEN and transesterification between two polymers caused the additional viscosity depression. further viscosity lowering was found in PEN/PET blend with CaST since CaST is acting as the catalyst of transesterification as well as a lubricant in PEN/PET blend.

Fabrication of Pixel Array using Pentacene TFT and Organic LED (펜타센 TFT와 유기 LED로 구성된 픽셀 어레이 제작)

  • Choe Ki Beom;Ryu Gi Seong;Jung Hyun;Song Chung Kun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.12
    • /
    • pp.13-18
    • /
    • 2005
  • In this paper, we fabricated a pixel array in which each pixel was consisted of Organic Thin Film Transistor (OTFT) serially connected with Organic Light Emitting Diode (OLED) on Poly-ethylene-terephthalate (PET) substrate and the number of pixels was 64 x 64. As a gate insulator of OTFT, the thermally cross-linked PVP was used and the organic semiconductor, Pentacene, is deposited for an active layer of OTFT considering the compatibility with PET substrate. The mobility of OTFT is $1.0\;cm^2/V{\cdot}sec$ as a discrete device, but it was reduced to $0.1\~0.2\;cm^2/V{\codt}sec$ in the array. We analyzed the operation of the array and confirmed the current driving ability of OTFTs for the OLEDs.

Enhancement of Compatibility and Toughening of Commingled Packaging Film Wastes (혼합 폐포장 필름의 상용성 증진과 강인화)

  • Jeon Byeong-Hwan;Yoon Hogyu;Hwang Seung-Sang;Kim Jungahn;Hong Soon-Man
    • Polymer(Korea)
    • /
    • v.29 no.2
    • /
    • pp.127-134
    • /
    • 2005
  • The relationships among mechanical properties, rheological properties, and morphology by reactive extrusion based on commingled pckaging film wastes contains polypropylene (PP) pckaging film system [PP/polyethylene (PE)/aluminum (Al)/poly(ethylene terephthalate) (PET)] and Nylon packaging film system[Nylon/PE/linear-low density polyethylene (LLDPE)] were investigated to improve the compatibility and toughness of these wastes using various compatibilizers such as ethylene vinylacetate (EVA), styrene-ethylene/butylene-styrene triblock copolymer (SEBS), styrene-ethylene/butylene-styrene-graft-maleic anhydride copolymer (SEBS-g-MA), polyethylene-graft-maleic anhydride (PE-g-MA), polypropylene-graft-maleic anhydride (PP-g-MA) , polyethylene-graft-acrylic acid (PE-g-AA) and polypropylene-graft-acrylic acid (PP-g-AA). Compared with simple melt blend system, the blends showed improvement of about $50\%$ increase in physical properties when SEBS and EVA were added. However, SEBS-g-MA thermoplastic elastomer which is highly reactive with amine terminal group of nylon, resulted in about $200\%$ increase in impact strength. This compatibilization effect resulted from the increase of interfacial adhesion and the reduction of domain size of dispersed phase in PP/Nylon blend system.

PET Fabric/Poly(3,4-ethylenedioxythiophene) Composite as Polymer Electrode in Redox Supercapacitor

  • Cho, Seung-Hyun;Joo, Jin-Soo;Jung, Bo-Ram;Ha, Tae-Min;Lee, Jun-Young
    • Macromolecular Research
    • /
    • v.17 no.10
    • /
    • pp.746-749
    • /
    • 2009
  • Poly(ethylene terephthalate) (PET) fabric/poly(3,4-ethylenedioxythiophene) (PEDOT) composite with stable and high electrochemical activity was fabricated by chemical and electrochemical polymerization of 3,4-ethylenedioxythiophene (EDOT) on a PET fabric in sequence. Effects of polymerization conditions on the following characteristics of the composite were studied: electrical conductivity and surface morphology. The electrochemical properties were also investigated by cyclic voltammetry and cyclic charge/discharge experiments. The specific volume resistivity, electrical conductivity and specific discharge capacitance of the composite were 0.034 $\Omega-cm$ and 25 S/cm, and 54.5 F/g, respectively.

Poly(ethylene terephthalate) Nanocomposite Fibers with Thermally Stable Organoclays (내열성 유기화 점토를 이용한 폴리(에틸렌 테레프탈레이트) 나노복합체 섬유)

  • Jung, Min-Hye;Chang, Jin-Hae
    • Polymer(Korea)
    • /
    • v.31 no.6
    • /
    • pp.518-525
    • /
    • 2007
  • The thermomechanical properties and morphologies of nanocomposite fibers of poly(ethylene terephthalate)(PET) incorporating thermally stable organoclays are compared. Dodecyltriphenyl-phosphonium-mica($C_{12}PPh-Mica$) and 1-hexadecane benzimidazole-mica ($C_{16}BIMD-Mica$) were used as reinforcing fillers in the fabrication of PET hybrid fibers. Dispersions of organoclays with PET were studied by using the in-situ polymerization method at various organoclay contents to produce nano-scale composites. The thermo-mechanical properties and morphologies of the PET hybrid fibers were determined using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), wide angle X-ray diffraction (XRD), electron microscopy (SEM and TEM), and a universal tensile machine (UTM). Transmission electron microscopy (TEM) micrographs show that some of the clay layers are dispersed homogeneously within the polymer matrix on the nano-scale, although some clay particles are agglomerated. We also found that the addition of only a small amount of organoclay is enough to improve the thermal stabilities and mechanical properties of the PET nanocomposite fibers. Even polymers with low organoclay content (<5 wt%) were found to exhibit much higher thermo-mechanical values than pure PET fibers.

Photocrosslinking of Polyester by UV irradiation (자외선 조사에 의한 폴리에스터의 광가교)

  • Yun, Deuk-Won;Jang, Jin-Ho
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2011.11a
    • /
    • pp.7-7
    • /
    • 2011
  • Poly(ethylene terephthalate)(PET) is one of the most widely used materials in textile industry. It can have a low cost, silk-like handle, and excellent mechanical properties. Low thermal stability of PET had been a common problem limiting its high temperature application. The polyester have been known to have the disadvantage of degradation under ionized irradiation compared to crosslikable polymers such as polyethylene, polypropylene and polystylene. To improve thermal stability of PET, the PET films were photocrosslinked by UV irradiation. A hydrogen-abstractable photoinitiator was used to photocrosslink of PET by continuous UV irradiation. Photoinitiator addition increased the gel fraction. The photocrosslinking was attributed to the recombination of PET radicals generated upon UV irradiation, which was enhanced by the hydrogen abstraction of the PET polymer chains by the added photoinitiator. Also the crosslinked PET showed higher thermal stability and mechanical strength with increasing UV energy. Polyester type films such as poly(ethylene naphthalate)(PEN) and poly(butylene terephthalte)(PBT) were also increased the gel fraction and improved thermal stability and mechanical properties by UV irradiation.

  • PDF