• Title/Summary/Keyword: Poly(acrylic acid)

Search Result 181, Processing Time 0.027 seconds

A Study on the Development of Eco-friendly Materials Using EPDM Scrap : Functionalization of EPDM and PP (에틸렌-프로필렌 고무 스크랩을 이용한 친환경소재 개발에 관한 연구 : EPDM과 PP의 기능화)

  • Kim, Sub;Chung, Kyung-Ho
    • Clean Technology
    • /
    • v.15 no.3
    • /
    • pp.180-185
    • /
    • 2009
  • The ethylene-propylene rubber (EPDM) scrap generated from automobile weatherstrip manufacturing process was used to make a thermoplastic elastomer through blending with polypropylene. The surface activated EPDM powder was obtained by the high temperature and shear pulverizer. The addition of surfactant resulted in more surface activated EPDM powder and the optimum loading amounts of surfactant was 1.5 phr. Maleic anhydride was grafted onto polypropylene by reactive blending to give functionalized polypropylene. The wetting property between EPDM scrap and polypropylene was improved by the addition of poly (ethylene-co-acrylic acid) as a compatibilizing agent. Poly(ethylene-co-acrylic acid) decreased the surface tension of polypropylene and thus would contribute to the wettability with EPDM powder.

Enhancement of Membrane Performance through Surface Hydrophilization of Hydrophobic Porous Flat-sheet Membranes (소수성 다공성 평막의 표면 친수화를 통한 막성능 향상)

  • Kim, Baek-Ahm;Lee, Hak-Min;Lee, Bo-Seong;Kim, Sung-Pyo;Cheong, Seong-Ihl;Rhim, Ji-Won
    • Polymer(Korea)
    • /
    • v.35 no.5
    • /
    • pp.438-443
    • /
    • 2011
  • In order to enhance water permeability through the improvement of fouling phenomena and wettability of hydrophobic porous membranes, various adsorption materials, i.e., poly(vinyl amine), poly (styrene sulfonic acid), poly(vinyl sulfonic acid), and poly(acrylamide-co-acrylic acid) were adsorbed onto the surface of polyethylene (PE) porous membrane. The concentration of adsorption solutions, adsorption time, the sort of salts and their ionic strength were varied, and the pure water permeability of their resulting adsorbed membranes was measured. In general, water permeability increased with an initial increase in the concentration of adsorption solution, adsorption time, and ionic strength and then decreased with a further increase. The pure water permeability of 375 $L/m^2h$(LMH), 35% enhancement, was obtained at a condition of poly(vinyl sulfonic acid) 1000 ppm, $Mg(NO_3)_2$ ionic strength(IS) 0.1, and adsorption time 150 sec, while the 50% (411 LMH) and 35% (374 LMH) enhancements were obtained at conditions of poly(styrene sulfonic acid) 1000 ppm, adsorption time 60 sec, and NaCl IS 0.1 and 0.2, respectively.

Radiolytic Fabrication and Characterization of PTFE-g-PAA as the Supporters for the Reinforced Composite Fuel Cell Membrane (방사선을 이용한 강화 복합 연료전지막 다공성 지지체용 PTFE-g-PAA 제조 및 특성 연구)

  • Sohn, Joon-Yong;Park, Byeong-Hee;Song, Ju-Myung;Lee, Young-Moo;Shin, Junhwa
    • Polymer(Korea)
    • /
    • v.37 no.5
    • /
    • pp.649-655
    • /
    • 2013
  • In order to use as supporters for the reinforced composite fuel cell membrane, poly(acrylic acid)-grafted porous polytetrafluoroethylenes (PTFEs) were prepared via introduction of poly(acrylic acid) graft chains by a radiation grafting method. FTIR was utilized to confirm the successful introduction of poly(acrylic acid) graft polymer chains into the porous PTFEs. Contact angles were examined to observe the hydrophilicity of the surface of the prepared substrates. The result indicates that the hyrophilicity of the surface in the prepared substrates increases with an increase in the number of hydrophilic polymer chains. FE-SEM, gurley number, and tensile strength were also utilized to characterize the prepared substrates.

Preparation of Composite Membranes Via PVA/PAM Solution Coating onto Hydrophilized PVDF Hollow Fiber Membrane and Their Pervaporation Separation of Water-ethanol Mixture (PVDF 중공사막의 표면친수화 후 PVA/PAM 용액의 코팅을 통한 복합막제조와 이의 물-에탄올계의 투과증발 분리)

  • Kim, Ji Seon;Park, Chae Young;Park, Hun Whee;Seo, Chang Hee;Rhim, Ji Won
    • Membrane Journal
    • /
    • v.23 no.4
    • /
    • pp.312-318
    • /
    • 2013
  • Poly vinylidene fluoride (PVDF) hollow fiber membranes were hydrophilized using polyethylenimine (PEI) and p-xylylene dichloride (XDC), and poly(vinyl alcohol) (PVA) and poly (acrylic acid -co- maleic acid) (PAM) mixed solutions by varying the concentration of PAM were coated onto PVDF membrane surface. The surface coating was verified by the observation of scanning electron microscope (SEM) and the permselective characteristcs of the resulting composite membranes were tested for 90 wt% aqueous ethanol solution by the pervaporation technique. The effects of the corsslinking agent concentraion, the temperature of feed solution, and the reaction temperature on the flux and separation factors were measured. Typically, the flux, $1,480g/m^2hr$ at the reaction temperature $100^{\circ}C$, PAM 3 wt%, feed temperature $70^{\circ}C$ was obtained, on the other hand, for the separation factor, ${\alpha}_{W/E}=82$ at the conditions of the reaction temperature $100^{\circ}C$, PAM 15 wt% and feed temperature $25^{\circ}C$ was shown.

Poly(phenanthrenequinone)-Poly(acrylic acid) Composite as a Conductive Polymer Binder for Submicrometer-Sized Silicon Negative Electrodes (서브마이크로미터 크기의 실리콘 음극용 폴리페난트렌퀴논-폴리아크릴산 전도성 고분자 복합 바인더)

  • Kim, Sang-Mo;Lee, Byeongil;Lee, Jae Gil;Lee, Jeong Beom;Ryu, Ji Heon;Kim, Hyung-Tae;Kim, Young Gyu;Oh, Seung M.
    • Journal of the Korean Electrochemical Society
    • /
    • v.19 no.3
    • /
    • pp.87-94
    • /
    • 2016
  • In order to improve performances of submicrometer-sized Si negative electrode which shows larger volumetric change than nano-sized Si, composite binders are introduced by blending between poly(phenanthrenequinone) (PPQ) conductive polymer binder and poly(acrylic acid) (PAA) having good adhesion strength due to its carboxyl functional group. Blending between PPQ and PAA shows an effect that the adhesion strength of the Si electrode with the composite conductive binder is greatly improved after blending and this makes its better stable cycle performance. Blending ratios between PPQ and PAA in this work are 2:1, 1:1, 1:2 (by weight) and the best capacity retention at 50th cycle is observed in the electrode with the blending ratio 2:1 (named QA21). This is because that PPQ plays a role of conductive carbon among the Si particles or between Si particles and Cu current collector and PAA binds effectively the particles and the current collector. According to this synergetic effect, the internal resistance of the Si electrode with the blending ratio 2:1 is the smallest value. In addition, the Si electrode with PPQ-PAA composite binder shows the better stable cycle performance than the electrode with conventional super-P conductive carbon (20 wt.%).

Effects of Cross-linking Agents on the Acetic Acid Dehydration Behaviors of PVA-PAN Composite Hollow Fiber Membranes (가교제 종류가 PVA-PAN 복합 중공사 분리막의 초산 탈수 거동에 미치는 영향)

  • Kang, Su Yeon;Kim, Ji Seon;Cho, Eun Hye;Rhim, Ji Won
    • Membrane Journal
    • /
    • v.24 no.4
    • /
    • pp.311-316
    • /
    • 2014
  • The polyacrylonitrile (PAN) hollow fiber composite membranes were prepared and their pervaporation performance was tested to concentrate the acetic acid aqueous solution. The coating of the composite membranes were confirmed by SEM images and the coating thickness was averagely $3.85{\mu}m$. As the crosslinking agent and the crosslinking temperature increase, the permeability decreases while the separation factor increases. Typically, the permeability $250g/m^2{\cdot}hr$ and the separation factor 13 were obtained for glutaraldehyde 13 wt% as the crosslinking agent and crosslinking temperature $140^{\circ}C$. And for the use of another crosslinking agent, poly (acrylic acid) 9 wt% and crosslinking temperature $140^{\circ}C$, the permeability $330g/m^2{\cdot}hr$ and separation factor 9 were obtained.

Preparation and Characterization of PVA/PAM Electrolyte Membranes Containing Silica Compounds for Direct Methanol Fuel Cell Application (실리카 화합물을 함유한 PVA/PAM 전해질 막의 제조 및 특성과 직접메탄올 연료전지로의 응용)

  • Yoon, Seok-Won;Kim, Dae-Hoon;Lee, Byung-Seong;Lee, Bo-Sung;Moon, Go-Young;Byun, Hong-Sik;Rhim, Ji-Won
    • Polymer(Korea)
    • /
    • v.34 no.1
    • /
    • pp.45-51
    • /
    • 2010
  • This study focuses on the investigation of the possibility of the crosslinked poly (vinyl alcohol) membranes with both poly (acrylic acid-co-maleic acid) (PAM) and 3-(trihydroxysilyl)-1-propane-sulfonic acid (THS-PSA) for the direct methanol fuel cell application. In order to characterize the prepared membranes, the water content, the thermal gravimetric analysis, the ion exchange capacity, the ion conductivity and the methanol permeability measurements were carried out and then compared with the existing Nafion 115 membrane. The ion exchange capacity of the resulting membranes showed 1.6~1.8 meq./g membrane which was improved than Nafion 115, 0.91 meq./g membrane. In the case of the proton conductivity, the THS-PSA introduced membranes gave more excellent $0.042{\sim}0.056\;S{\cdot}cm^{-1}$ than Nafion 115, $0.024\;S{\cdot}cm^{-1}$. On the other hand, the methanol permeability was increased more than Nafion 115 for all the range of THA-PSA concentration.

Preparation and Characterization of pH-Sensitive Poly(ethylene oxide) Grafted Methacrylic Acid and Acrylic Acid Hydrogels by ${\gamma}-ray $ Irradiation

  • Lim, Youn-Mook;Lee, Young-Moo;Nho, Young-Chang
    • Macromolecular Research
    • /
    • v.13 no.4
    • /
    • pp.327-333
    • /
    • 2005
  • pH-sensitive hydrogels were studied as a drug carrier for the protection of insulin from the acidic environment of the stomach before releasing it in the small intestine. In this study, hydrogels based on poly(ethylene oxide) (PEO) networks grafted with methacrylic acid (MAA) or acrylic acid (AAc) were prepared via a two-step process. PEO hydrogels were prepared by ${\gamma}-ray $ irradiation (radiation dose: 50 kGy, dose rate: 7.66 kGy/h), grafted by either MAA or AAc monomers onto the PEO hydrogels and finally underwent irradiation (radiation dose: 520 kGy, dose rate: 2.15 kGy/h). These grafted hydrogels showed a pH-sensitive swelling behavior. The grafted hydrogels were used as a carrier for the drug delivery systems for the controlled release of insulin. Drug-loaded hydrogels were placed in simulated gastric fluid (SGF, pH 1.2) for 2 hr and then in simulated intestinal fluid (SIF, pH 6.8). The in vitro drug release behaviors of these hydrogels were examined by quantification analysis with a UV-Vis spectrophotometer.