• Title/Summary/Keyword: Poly(Propyl Methacrylate)

Search Result 11, Processing Time 0.032 seconds

Phase Behavior on the Binary and Ternary System of Poly(propyl acrylate) and Poly(propyl methacrylate) with Supercritical Solvents (초임계 용매를 포함한 Poly(propyl acrylate)와 Poly(propyl methacrylate)의 이성분 및 삼성분계에 관한 상거동)

  • Byun, Hun-Soo;Lee, Ha-Yeun
    • Korean Chemical Engineering Research
    • /
    • v.40 no.6
    • /
    • pp.703-708
    • /
    • 2002
  • High pressure phase behavior data for poly(propyl acrylate) and poly(propyl methacrylate) with supercritical $CO_2$, ethylene, propane, butane, propylene, 1-butene, dimethyl ether, and $CHClF_2$ were measured in the temperature range from $23^{\circ}C$ to $186^{\circ}C$ and at pressures up to 2,400 bar. The cloud point were obtained at dissolved pressure below 2,070, 1,400, 1,880, 450, 2,200, 250, and 150 bar for poly(propyl acrylate) in supercritical $CO_2$, ethylene, propane, propylene, butane, 1-buthen, and dimethyl ether, respectively. The temperature range is $23-175^{\circ}C$. The poly(propyl methacrylate) does not dissolve in $CO_2$ at temperature of $240^{\circ}C$ and pressure 2,900 bar. The poly(propyl methacrylate)-propane, poly(propyl methacrylate)-butane, poly(propyl methacrylate)-propylene, poly(propyl methacrylate)-1-butene, and poly(propyl methacrylate)-$CHClF_2$ systems were dissolved at the pressures less than 2,390 bar, below 2,100 bar, below 570 bar, below 310 bar, below 300 bar, and below 170 bar, respectively. The temperature range shows from 40 to $186^{\circ}C$. The phase behavior of between binary poly(propyl acrylate)-$CO_2$ and poly(propyl acrylate)-dimethyl ether system were measured from upper critical solution temperature region to lower critical solution temperature region with added dimethyl ether concentrations of 5, 15 and 50 wt%.

Preparation of Poly(styrene-co-(trimethoxysilyl)propyl methacrylate)-grafted ETFE Films by a Simultaneous Irradiation Grafting Method (방사선을 이용한 스티렌-TMSPM 공중합체가 그래프트된 ETFE 필름의 제조)

  • Sung, Hae-Jun;Sohn, Joon-Yong;Song, Ju-Myung;Shin, Jun-Hwa;Nho, Young-Chang
    • Polymer(Korea)
    • /
    • v.35 no.5
    • /
    • pp.478-482
    • /
    • 2011
  • In this study, several poly(styrene-co-(trimethoxysilyl)propyl methacrylate)-grafted ETFE films were prepared by a simultaneous irradiation grafting method. After mixing of styrene/(trimethoxysilyl)propyl methacrylate(TMSPM) monomers with various solvents, the effects of various irradiation conditions such as total dose, dose rate and monomer concentration on the degree of grafting of the prepared membranes were investigated. Results indicated that the higher degree of grafting was obtained when acetone was used as a solvent. The formation of poly(styrene-co-TMSPM) grafts on the ETFE films was verified using FTIR spectrometry and the distribution of the poly(PTMSPM) graft polymer over the cross-section of the grafted film was confirmed using SEM-EDX instrument.

Liquid Crystal Aligning Capabilities on the Photopolymer Based Maleimide (Maleimide계 폴리머를 이용한 액정배향특성)

  • 이윤건;황정연;서대식;김준영;이재호;김태호
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.358-361
    • /
    • 2001
  • A new photoalignment material PM15CA, poly{N-(phenyl)maleimide-co-3-[4-(pentyloxy) cinnamate]propyl-2-hydroxy-1-methacrylate}, was synthesized and the electro-optical (EO) characteristics in the vertical-aligned (VA) liquid crystal display (LCD) photo-aligned on the photopolymer surface were studied. Excellent voltage-transmittance(V-T) characteristics in the VA-LCD photoaligned with polarized UV exposure of oblique direction on the pohotopolymer surfaces for 1 min can be achieved. The transmittance of the VA-LCD photoaligned on the photopolymer surface decreased with increasing UV exposure time. We suggest that the decrease of transmittance in the VA-LCD photoaligned on the photopolymer surface is attributed to the dissociation of the ester linkage in the photodimerized cinnamate structure with increasing UV exposure time

  • PDF

Facile and effective antibacterial coatings on various oxide substrates

  • Kim, Dae Wook;Moon, Jeong-Mi;Park, Soyoung;Choi, Joon Sig;Cho, Woo Kyung
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.68
    • /
    • pp.42-47
    • /
    • 2018
  • This work reports a facile and effective antibacterial coating for oxide substrates. As a coating material, a random copolymer, abbreviated as poly(TMSMA-r-PEGMA), was synthesized by radical polymerization of 3-(trimethoxysilyl)propyl methacrylate (TMSMA) and poly(ethylene glycol) methyl ether methacrylate (PEGMA). Polymeric self-assembled monolayers of poly(TMSMA-r-PEGMA) were formed on various inorganic oxide substrates, including silicon oxide, titanium dioxide, aluminum oxide, and glass, via the simple dip-coating process. The polymer-coated substrates were characterized by ellipsometry, contact angle measurements, and X-ray photoelectron spectroscopy. The bacterial adhesion on the polymer-coated substrates was completely suppressed compared to that on the uncoated substrates.

Liquid Crystal Aligning Capabilities on the Photopolymer Based Maleimide (Maleimide계 폴리머를 이용한 액정배향특성)

  • Lee, Yun-Gun;Hwang, Jeoung-Yeon;Seo, Dae-Shik;Kim, Jun-Young;Lee, Jae-Ho;Kim, Tae-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.358-361
    • /
    • 2001
  • A new photoalignment material PMI5CA, poly{N-(phenyl)maleimide-co-3-[4-(pentyloxy) cinnamate]propyl-2-hydroxy-1-methacrylate}, was synthesized and the electra-optical (EO) characteristics in the vertical-aligned (VA) liquid crystal display (LCD) photo-aligned on the photopolymer surface were studied. Excellent voltage-transmittance(V-T) characteristics in the VA-LCD photoaligned with polarized UV exposure of oblique direction on the pohotopolymer surfaces for 1 min can be achieved. The transmittance of the VA-LCD photoaligned on the photopolymer surface decreased with increasing UV exposure time. We suggest that the decrease of transmittance in the VA-LCD photoaligned on the photopolymer surface is attributed to the dissociation of the ester linkage in the photodimerized cinnamate structure with increasing UV exposure time

  • PDF

Synthesis of Poly(methacrylic acid)-functionalized SBA-15 and its Adsorption of Phenol in Aqueous Media

  • Vo, Vien;Kim, Hee-Jin;Kim, Ha-Yeong;Kim, Youngmee;Kim, Sung Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.12
    • /
    • pp.3570-3576
    • /
    • 2013
  • Poly(methacrylic acid)-functionalized SBA-15 silicas (denoted as P-x-PMA/SBA-15 where x is molar ratio of TSPM/(TEOS+TSPM) in percentage in the initial mixture) were synthesized by co-condensation of tetraethoxysilane and varying contents of 3-(trimethoxysilyl)propyl methacrylate in acidic medium with the block copolymer Pluronic 123 as a structure directing agent and then polymerization by methacrylic acid in the presence of ammonium persulfate as an initiator. The functionalized materials were characterized by PXRD, TEM, SEM, IR, and $N_2$ adsorption-desorption at 77 K. The investigation of phenol adsorption in aqueous solution on the materials showed that the poly(methacrylic acid)-functionalized mesoporous silicas possess strong adsorption ability for phenol with interaction of various kinds of hydrogen bonds. The adsorption data were fitted to Langmuir isotherms and the maximum adsorption capacity of the three functionalized materials P-5-PMA/SBA-15, P-10-PMA/SBA-15, and P-15-PMA/SBA-15 to be 129.37 mg/g, 187.97 mg/g, and 78.43 mg/g, respectively, were obtained. The effect of the pH on phenol adsorption was studied.

Silane-crosslinked Proton Exchange Membranes Prepared by a Stepwise Radiation Grafting (방사선 그래프트를 순차적으로 진행하여 제조된 실란 가교구조의 수소이온교환막)

  • Lee, Ji-Hong;Choi, Hongsuk;Song, Ju-Myung;Sohn, Joon-Yong;Shin, Junhwa
    • Polymer(Korea)
    • /
    • v.36 no.6
    • /
    • pp.816-821
    • /
    • 2012
  • In this study, silane-crosslinked proton exchange membranes were prepared by step-wise radiation grafting of styrene and 3-(trimethoxysilyl)propyl methacrylate (TMSPM) onto an poly(ethylene-co-tetrafluoroethylene) (ETFE) film and followed by sol-gel processing and sulfonation. The sequentially grafted films with styrene to provide the proton conductivity and TMSPM to form the crosslinked structure were prepared by different grafting order. The structural changes and thermal properties of the prepared films were investigated by FTIR and TGA, respectively. After the introduction of sulfonic acid functional groups, the distributions of sulfonic acid group and silicon atoms at the inside of the sulfonated membranes were analyzed by SEM-EDX.

In situ Microfluidic Method for the Generation of Monodisperse Double Emulsions (미세유체를 이용한 단분산성 이중 에멀젼 생성 방법)

  • Hwang, So-Ra;Choi, Chang-Hyung;Kim, Hui-Chan;Kim, In-Ho;Lee, Chang-Soo
    • Polymer(Korea)
    • /
    • v.36 no.2
    • /
    • pp.177-181
    • /
    • 2012
  • This study presents the preparation of double emulsions in a poly(dimethylsiloxane) (PDMS)-based microfluidic device. To improve the wettability of hydrophilic continuous phase onto a hydrophobic PDMS microchannel, the surface was modified with 3-(trimethoxysilyl) propyl methacrylate (TPM) and then sequentially reacted with acrylic acid monomer solution, which produced selective covalent bonding between acrylic acids and methacrylate groups. For the proof of selective surface modification, tolonium chloride solution was used to identify the modified region and we confirmed that the approach was successfully performed. When water containing 0.5% w/w sodium dodecyl sulfate and 1% w/w Span80 with hexadecane were loaded into the selectively modified microfluidic channels, we can produce stable double emulsion. Based on the spreading coefficients, we predict the morphology of double emulsions. Our proposed method efficiently produces monodisperse double emulsions having 48.5 ${\mu}m$(CV:1.6%) core and 65.1 ${\mu}m$ (CV:1.6%) shell. Furthermore, the multiple emulsions having different numbers of core were easily prepared by simple control of flow rates.

Fabrication of Silane-crosslinked Proton Exchange Membranes by Radiation and Evaluation of Fuel Cell Performance (방사선을 이용한 실란 가교구조의 유/무기 복합 수소이온 교환막 제조 및 연료전지 성능 평가)

  • Lee, Ji-Hong;Sohn, Joon-Yong;Shin, Dong-Won;Song, Ju-Myung;Lee, Young-Moo;Nho, Young-Chang;Shin, Jun-Hwa
    • Polymer(Korea)
    • /
    • v.36 no.4
    • /
    • pp.525-530
    • /
    • 2012
  • In this study, silane-crosslinked organic/inorganic composite membranes were prepared by simultaneous irradiation grafting of binary monomer mixtures (styrene and 3-(trimethoxysilyl)propyl methacrylate (TMSPM)) with various compositions onto a poly(ethylene-alt-tetraethylene) (ETFE) film and followed by sol-gel processing and sulfonation to provide a silane-crosslinked structure and a proton conducting ability, respectively. The Fourier transform infrared spectroscopy (FTIR) and thermo gravimetric analysis (TGA) were utilized to confirm the crosslinking of ETFE-g-PS/PTMSPM films. The prepared membranes with similar ion exchange capacity but a different TMSPM content were selected and their membrane properties were compared. The ETFE-g-PSSA/PTMSPM membranes were characterized by water uptake, dimensional stability, and proton conductivity after sulfonation. The membrane electrode assemblies (MEA) of the prepared membranes were fabricated and their single cell performances were measured.

Single-Protein Molecular Interactions on Polymer-Modified Glass Substrates for Nanoarray Chip Application Using Dual-Color TIRFM

  • Kim, Dae-Kwang;Lee, Hee-Gu;Jung, Hyung-Il;Kang, Seong-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.5
    • /
    • pp.783-790
    • /
    • 2007
  • The immobilization of proteins and their molecular interactions on various polymer-modified glass substrates [i.e. 3-aminopropyltriethoxysilane (APTS), 3-glycidoxypropyltrimethoxysilane (GPTS), poly (ethylene glycol) diacrylate (PEG-DA), chitosan (CHI), glutaraldehyde (GA), 3-(trichlorosilyl)propyl methacrylate (TPM), 3'-mercaptopropyltrimethoxysilane (MPTMS), glycidyl methacrylate (GMA) and poly-l-lysine (PL).] for potential applications in a nanoarray protein chip at the single-molecule level was evaluated using prismtype dual-color total internal reflection fluorescence microscopy (dual-color TIRFM). A dual-color TIRF microscope, which contained two individual laser beams and a single high-sensitivity camera, was used for the rapid and simultaneous dual-color detection of the interactions and colocalization of different proteins labeled with different fluorescent dyes such as Alexa Fluor® 488, Qdot® 525 and Alexa Fluor® 633. Most of the polymer-modified glass substrates showed good stability and a relative high signal-to-noise (S/N) ratio over a 40-day period after making the substrates. The GPTS/CHI/GA-modified glass substrate showed a 13.5-56.3% higher relative S/N ratio than the other substrates. 1% Top-Block in 10 mM phosphate buffered saline (pH 7.4) showed a 99.2% increase in the blocking effect of non-specific adsorption. These results show that dual-color TIRFM is a powerful methodology for detecting proteins at the single-molecule level with potential applications in nanoarray chips or nano-biosensors.