DOI QR코드

DOI QR Code

Silane-crosslinked Proton Exchange Membranes Prepared by a Stepwise Radiation Grafting

방사선 그래프트를 순차적으로 진행하여 제조된 실란 가교구조의 수소이온교환막

  • Lee, Ji-Hong (Research Division for Industry and Environment, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute) ;
  • Choi, Hongsuk (Research Division for Industry and Environment, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute) ;
  • Song, Ju-Myung (Research Division for Industry and Environment, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute) ;
  • Sohn, Joon-Yong (Research Division for Industry and Environment, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute) ;
  • Shin, Junhwa (Research Division for Industry and Environment, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute)
  • 이지홍 (한국원자력연구원 첨단방사선연구소 공업환경연구부) ;
  • 최홍석 (한국원자력연구원 첨단방사선연구소 공업환경연구부) ;
  • 송주명 (한국원자력연구원 첨단방사선연구소 공업환경연구부) ;
  • 손준용 (한국원자력연구원 첨단방사선연구소 공업환경연구부) ;
  • 신준화 (한국원자력연구원 첨단방사선연구소 공업환경연구부)
  • Received : 2012.07.16
  • Accepted : 2012.08.22
  • Published : 2012.11.25

Abstract

In this study, silane-crosslinked proton exchange membranes were prepared by step-wise radiation grafting of styrene and 3-(trimethoxysilyl)propyl methacrylate (TMSPM) onto an poly(ethylene-co-tetrafluoroethylene) (ETFE) film and followed by sol-gel processing and sulfonation. The sequentially grafted films with styrene to provide the proton conductivity and TMSPM to form the crosslinked structure were prepared by different grafting order. The structural changes and thermal properties of the prepared films were investigated by FTIR and TGA, respectively. After the introduction of sulfonic acid functional groups, the distributions of sulfonic acid group and silicon atoms at the inside of the sulfonated membranes were analyzed by SEM-EDX.

본 연구에서는 스티렌(styrene)과 TMSPM(3-(trimethoxysilyl)propyl methacrylate) 단량체를 방사선을 이용하여 ETFE(poly(ethylene-co-tetrafluoroethylene)) 필름에 순차적으로 그래프트시킨 후 졸-젤 반응 및 설폰화 반응을 진행하여 실란 가교구조의 수소이온교환막을 제조하였다. 그래프트시 수소이온 전도성을 부여하게 될 스티렌과 가교구조를 형성시킬 TMSPM의 그래프트 순서가 다른 두 종류의 필름을 제조하여 FTIR을 통하여 구조 변화를 비교하였으며, TGA를 이용하여 열적 특성 변화를 관찰하였다. 두 종류의 필름에 설폰산 작용기를 도입한 후 SEM-EDX 기기를 이용하여 막 내부 설폰산 및 실리콘의 분포를 확인하였다.

Keywords

Acknowledgement

Supported by : 교육과학기술부

References

  1. M. K. Rahman, G. Aiba, M. A. H. Susan, and M. Watanabe, Electrochim. Acta, 50, 633 (2004). https://doi.org/10.1016/j.electacta.2003.12.077
  2. S. J. Yoon, J. H. Choi, and Y. T. Hong, Macromol. Res., 18, 352 (2010). https://doi.org/10.1007/s13233-010-0406-3
  3. M. Winter and R. J. Brodd, Chem. Rev., 104. 4245 (2004). https://doi.org/10.1021/cr020730k
  4. J.-S. Kim, R. J. Jackman, and A. Eisenberg, Macromolecules, 27, 2789 (1994). https://doi.org/10.1021/ma00088a021
  5. J.-P. Shin, B.-J. Change, J.-H. Kim, S.-B. Lee, and D.-H. Suh, J. Membr. Sci., 251, 247 (2005). https://doi.org/10.1016/j.memsci.2004.09.050
  6. B.-S. Ko, J. Shin, J.-Y. Sohn, Y.-C. Nho, and P.-H. Kang, Polymer(Korea), 33, 268 (2009).
  7. S. Kang, D.-H. Peck, S.-K. Kim, S. Lim, D. Jung, Y.-C. Park, J. Shin, P.-H. Kang, Y.-C. Nho, and Y. Shul, J. Korean Electrochem. Soc., 12, 173 (2009). https://doi.org/10.5229/JKES.2009.12.2.173
  8. J.-M. Song, J. Shin, J.-Y. Sohn, and Y.-C. Nho, Macromol. Res., 20, 477 (2012). https://doi.org/10.1007/s13233-012-0067-5
  9. J. Chen, M. Asano, Y. Makawa, and M. Yoshida, J. Membr. Sci., 296, 77 (2007). https://doi.org/10.1016/j.memsci.2007.03.017
  10. T. R. Dargaville, G. A. George, D. J. T. Hill, and A. K. Whittaker, Prog. Polym. Sci., 28, 1355 (2003). https://doi.org/10.1016/S0079-6700(03)00047-9
  11. T. Hatanaka, N. Hasegawa, A. Kamiya, M. Kawasumi, Y. Morimoto, and K. Kawahara, Fuel, 81, 2173 (2002). https://doi.org/10.1016/S0016-2361(02)00164-3
  12. J. Chen, M. Asano, T. Yamaki, and M. Yoshida, J. Power Sources, 158, 69 (2006). https://doi.org/10.1016/j.jpowsour.2005.09.024
  13. M. M. Nasef and E. S. A. Hegazy, Prog. Polym. Sci., 29, 499 (2004). https://doi.org/10.1016/j.progpolymsci.2004.01.003
  14. J. Shin, B.-S. Ko, S.-A. Kang, G. Fei, Y.-C. Nho, and P.-H. Kang, Nucl. Instrum. Meth. B, 267, 791 (2009). https://doi.org/10.1016/j.nimb.2008.12.009
  15. J.-H. Choi, P.-H. Kang, Y.-M. Lim, J.-Y. Sohn, J. Shin, C.-H. Jung, J.-P. Jeun, and Y.-C. Nho, Korean Membrane J., 9, 52 (2007).
  16. L. Gubler, S. A. Gursel, and G. G. Scherer, Fuel Cells, 5, 317 (2005). https://doi.org/10.1002/fuce.200400078
  17. J. Huslage, T. Rager, B. Schnyder, and A. Tsukada, Electrochim. Acta, 48, 254 (2002).
  18. F. N. Buchi, B. Gupta, O. Haas, and G. G. Scherer, Electrochim. Acta, 40, 345 (1995). https://doi.org/10.1016/0013-4686(94)00274-5
  19. S.-A. Kang, J. Shin, G. Fei, B.-S. Ko, C.-Y. Kim, Y.-C. Nho, and P.-H. Kang, J. Ind. Eng. Chem., 15, 516 (2009). https://doi.org/10.1016/j.jiec.2009.01.008
  20. J. Chen, M. Asano, Y. Makawa, and M. Yoshida, J. Polym. Sci. Part A: Polym. Chem., 46, 5559 (2008). https://doi.org/10.1002/pola.22876
  21. J.-M. Song, J. Shin, J.-Y. Sohn, and Y.-C. Nho, Macromol. Res., 19, 1082 (2011). https://doi.org/10.1007/s13233-011-1013-7
  22. J.-H. Lee, J.-Y. Sohn, D.-W. Shin, J.-M. Song, Y.-M. Lee, Y.-C. Nho, and J. Shin, Polymer(Korea), 36, 525 (2012).
  23. H.-J. Sung, J.-Y. Sohn, J.-M. Song, J. Shin, and Y.-C. Nho, Polymer(Korea), 35, 478 (2011).
  24. S.-Y. Lee, J.-M. Song, J.-Y. Sohn, Y.-C. Nho, and J. Shin, Polymer(Korea), 35, 610 (2011).
  25. G. A. Lisovskii, V. A. Saechnikov, E. A. Chernyavskaya, T. P. Yanukovich, I. M. Melnichenko, and E. N. Poddenezhnyi, J. Appl. Spectrosc., 67, 369 (2000) https://doi.org/10.1007/BF02681862
  26. M. M. Nasef, Polym. Int., 50, 338 (2001). https://doi.org/10.1002/pi.634